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Chapter 1

Introduction

|1.1 : My personal experience

In January 2023, I attended a lecture given by Jean-Pierre Petit in Paris on his Janus
Cosmological Model, the product of decades of work. I was immediately interested
by the coherence of this model. Wanting to know more, I watched the dozens of
videos he had created and devoured the PDFs containing the calculations supporting
what was presented in them. I devoured his comic books, like his Topologicon.

I was immediately taken aback. It all seemed strangely accessible and intelligible. I
quickly got in touch with the author of all these works. I didn't know how I could
take part in all this. Jean-Pierre Petit said to me, “Be the chronicler of this adventure”.
It was a challenge, which I accepted. To carry out this work, I had to spend whole
nights reading articles and adding to my knowledge of various books.

Months went by. The result was this book of over two hundred pages. At the same
time, Jean-Pierre Petit kept me abreast of any progress. As he hadn't mastered the
language of latex, and magazines were now demanding that articles be supplied in
this form, I offered my services and translated all the articles he produced into latex.
In the process, I discovered the countless barriers that magazines put up to any
innovative approach. Barriers that very often boil down to the simple phrase “not
suitable”.

The difficulty, in this peer-reviewed system, is to find a referee who not only agrees
to spend dozens of hours examining the article submitted to him/her, without the
slightest remuneration in return, but also has the skills to assess its relevance. Petit's
solution, inspired by the submariners' “fan fire”, was to send out a volley of articles,
just as a submarine fires its torpedoes. So, day after day, I took part in this plan. Until
we had one hit, then two. The reader will find a reproduction of the second at the end
of the book.

As I also acted as secretary to the magazines, it was necessary for my name to appear
on these articles as co-author. But there's a gulf between understanding these texts
and being able to give birth to such ideas. It takes decades of thought and maturation
to produce even the slightest idea.

One thing is certain from this experience. I climbed onto the walls of the labyrinth
and saw what others couldn't. I saw them trampling down dead ends, going round
and round in loops.



1.2. Contents

What emerges from the crisis in disciplines such as cosmology and astrophysics is a
growing inability, now a complete impossibility, to come up with a “standard model”
to account for observational data. The first images from the James Webb Telescope
were the final blow to these pathetic efforts.

The need for a paradigm shift is now obvious. Yet it's astonishing that a scientist like
Germany's Sabine Hossenfelder, who has for years made a name for herself by the
pertinence of her commentaries on current scientific events, should refuse to examine
Jean-Pierre Petit's Janus Cosmological Model, on which she has never produced the
slightest comment. On the contrary, in a video at the end of 2024, she seems to
consider that the only way forward is to turn to the idea of the Israeli Mordechai
Milgrom, who suggests quite simply that at great distances, Newton's 1/r2 law
becomes a 1/r law. Newton's law emerges from the general relativity equation,
Einstein's equation. The Israeli's proposal, which is limited to the non-relativistic
world, is tantamount to rejecting this equation outright, without proposing anything
in return.

By comparison, Petit's proposal, his Janus Cosmological Model, is far less damaging
since, far from rejecting the equation introduced by Einstein in 1915, he proposes to
integrate it into a mathematically and physically coherent system of two coupled field
equations. General relativity is thus presented as a special case, albeit a very
interesting one, for describing phenomena where my positive mass dominates.

A model that not only provides concrete answers to all the problems of time, but is
not contradicted to this day by any observational data.

But this involves climbing the walls of the labyrinth. People may be afraid of what
might then appear before their eyes.



Chapter 2

Theoretical Foundations

2.1 Newton’s Law of Gravitation

Newton’s law, formulated in Euclidean space, states that when a mass m is subjected
to the influence of the gravitational force G generated by another mass M, this force F’
is inversely proportional to the square of the distance d that separates the two masses,
and it can be expressed by the following equation:

_G~m-M

F 7

(2.1.1)

The larger the masses, the greater the force, but this force decreases rapidly as the
distance increases due to the d? term in the denominator. This law is essential for
understanding gravity and the movements of celestial objects.

In physics, this law of gravitation has been fundamental in understanding grav-
itational interactions between celestial bodies, from Earth to planets and stars. It
remains a foundational law of classical mechanics and has played a crucial role in the
development of astronomy and astrophysics. It has also been confirmed by numerous
observations and experiments over the centuries, further reinforcing its validity in un-
derstanding the universe.

However, while Newton’s gravitational law has proven to be remarkably powerful
and precise in numerous scenarios, it began to reveal its limitations when applied to
situations involving speeds approaching the speed of light and phenomena at an as-
tronomical scale. This marked the point at which Albert Einstein’s Theory of Special
Relativity emerged, heralding a paradigm shift in our understanding of the fundamental
concepts of space, time, and gravitation. In the ensuing section, we will meticulously
delve into the foundational principles of Special Relativity, which will lay the ground-
work for our subsequent exploration of General Relativity. This will lead us towards a
more profound comprehension of the intricacies of the cosmos.

10



CHAPTER 2. THEORETICAL FOUNDATIONS

2.2 Introduction to Special Relativity

In the early 20" century, physics underwent a conceptual revolution that would chal-
lenge the foundations established by Sir Isaac Newton in the 17" century. As obser-
vations and experiments became increasingly precise, anomalies emerged when dealing
with speeds close to that of light and extreme cosmic environments. In this context,
Albert Einstein’s Special Relativity made its entrance, disrupting our traditional un-
derstanding of space, time, and gravity.

2.2.1 Minkowski Spacetime & Proper Time

Special Relativity invites us to abandon the idea that the universe unfolds in a three-
dimensional Euclidean space where time is a separate entity. Instead, it presents a
model in which we reside in a hypersurface of four dimensions, where the three dimen-
sions of space are perpendicular to a temporal dimension. This fusion of space and time
forms what is known as Minkowski spacetime, with a metric signature of (— + ++)*.

To better grasp this concept, envision a point M moving in this spacetime described
by two coordinates: time (¢) and spatial position (). As this point evolves, a neighbor-
ing point M’ corresponds to slightly modified values: (¢ + dt, z 4+ dz), where d¢ and dx
represent small increments of time and space. If we consider that this increment occurs
along a trajectory described by x = ct (where ¢ is the speed of light), then dz = cdt.

At this juncture, we introduce the concept of "proper time". The quantity s, known
as proper time, is a measure of time that governs the life of an object moving at a
velocity v. To calculate s, we use the equation:

ds? = Adt? — da? (2.2.1)

This equation demonstrates how proper time (s) is related to changes in time (dt)
and space (dx) when an object moves at a velocity v = ¢. It also reveals that proper
time can vary based on the velocity and trajectory of the object, leading to phenomena
such as time dilation.

In Einstein’s theory of special relativity, time is not absolute but depends on the
relative velocity of the observer. The next mathematical development describes the
relationship between the proper time 7, which is the time measured by the clock in
motion (onboard the spaceship), and the coordinate time ¢, which is the time measured

!The metric signature is an important characteristic of spacetime that indicates how time and space
intervals are combined in the equations of special relativity. In this (— + 4+) signature, the first term
corresponds to the time interval, which is subtracted from the three subsequent terms corresponding
to space intervals. This means that time has a negative sign in the metric, while the three spatial
dimensions have positive signs. This specific signature is crucial for understanding how distances and
time intervals are measured within the framework of special relativity.

11



CHAPTER 2. THEORETICAL FOUNDATIONS

by the clock that has remained on the ground (at rest with respect to the observer).

s=c7 = ds =cdr = 2dr? = Adt? — d2?
1 dr? 1 /dz\?
2 _ o2 L9 Dl T et
=dr° =dt CQd;c = ETE =1 2 (dt> (2.2.2)
dr? 02 v2

This implies that in a scenario where ¢ represents the time measured by a station-
ary observer equipped with a ground-based clock, and v is the velocity of an object
equipped with an onboard clock moving at this speed relative to this assumed stillness,
then the proper time 7 that will elapse in this object will be affected by time dilation

described by /1 — Z—; known as the "Lorentz factor”.

2.2.2 The Speed of Light as a Limit

It is important to note that in this spacetime, the speed of light is constrained by the
properties of spacetime (along with its contents) in which it propagates.

Indeed, if we assume that x represents the spatial coordinate, ¢ is the time coordi-
nate, and c is the speed of light, then we can define a velocity v using the expression

Starting with the hypothesis that the proper time variation is always greater than
or equal to 0%, it follows that the speed of light in a vacuum is the ultimate speed limit
for objects in motion with a positive rest mass, as v < ¢. Photons, in contrast, follow
trajectories for which v = ¢, leading to unique properties associated with light.

Special Relativity is a theory confined to the study of inertial reference frames,
specifically those in uniform rectilinear motion (in spaces without curvature, moving in
straight lines at a constant velocity).

2.2.3 Fundamental Concepts

Special relativity is primarily based on three concepts:

e Postulate of the Invariance of the Speed of Light: This postulate asserts
that the speed of light in a vacuum is a universal constant, and it remains the same
for all observers, regardless of their relative motion. In other words, the speed of
light cannot be added to or subtracted from an observer’s velocity. This funda-
mental idea was confirmed by the famous Michelson-Morley experiment ([39]).

2ds2 = cAdt2 —dx? >0

12



CHAPTER 2. THEORETICAL FOUNDATIONS

e Cosmological Principle: The cosmological principle posits that the universe is
homogenous and isotropic. This means that its properties are uniform and identi-
cal in all directions and scales. This principle allows us to extend the application
of the laws of special relativity to the cosmic scale, considering the universe as a
whole.

e Principle of Special Relativity: The principle of special relativity asserts that
the laws of physics are consistent in all inertial frames of reference. Inertial frames
are those moving at a constant velocity relative to each other. This principle
generalizes Galileo’s concept of relativity and challenges the notion of an absolute
reference frame. It demonstrates that the laws of physics remain consistent and
invariant, regardless of the relative velocities of observers.

2.2.4 The Equivalence of Mass & Energy

One of the most iconic equations in the realm of physics is Albert Einstein’s mass-energy
equivalence equation. This equation signifies a profound connection between mass (m)
and energy (FE), revealing that they are interchangeable in the universe.

Albert Einstein’s groundbreaking insight, which led to the formulation of this equiv-
alence, emerged from his special theory of relativity. In this theory, Einstein postulated
that energy and mass are intrinsically linked, and the equation serves as the keystone
of this union.

The equation’s core concept is straightforward: it states that the energy (E) of an
object is directly proportional to its mass (m), with the speed of light in a vacuum (c)
as the proportionality constant. Mathematically, it can be expressed as:

E =mc? (2.2.3)

Let’s explore this equation further through a simple example. Suppose we have a
small object with a mass of 1 gram (0.001 kilograms). By applying Einstein’s equation,
we can calculate the energy equivalent of this mass:

E = (0.001kg) x (3 x 10°m/s)? = 9 x 10" joules (2.2.4)

This astonishingly large amount of energy underscores the profound impact of Equa-
tion 2.2.3. Tt demonstrates that even a small mass can produce an enormous amount
of energy when converted using this equation. This equation plays a pivotal role in
understanding nuclear reactions, such as those occurring in stars and nuclear power
plants, where tiny mass changes result in substantial energy releases.

Einstein’s equation, with its capacity to bridge mass and energy, remains a corner-
stone of modern physics, profoundly influencing our comprehension of the universe’s
workings.

While Special Relativity has allowed us to explore fascinating aspects of the cosmos
by guiding us through journeys at speeds close to that of light and revealing how

13



CHAPTER 2. THEORETICAL FOUNDATIONS

spacetime bends in response to our motion, it is confined to a specific framework, that
of inertial reference frames and uniform rectilinear motions. However, what happens
when gravity comes into play? How does the structure of spacetime evolve in the
presence of massive objects or significant curvature? This is where Albert Einstein’s
General Relativity takes over in the next section.

2.3 Introduction to General Relativity

2.3.1 A Revolution in Physics

The law of Newton is a theory that works well in many situations as explained on Sec-
tion 2.1, but it cannot explain certain phenomena observed at speeds close to that of
light or in the presence of strong gravitational fields. Albert Einstein’s General Relativ-
ity (GR) is a more comprehensive theory that encompasses these gravitational effects.
General Relativity, a cornerstone of modern physics, revolutionized our understanding
of gravity and the universe. Proposed by Albert Einstein in 1915, this theory is based
on the principle that gravity is a manifestation of the curvature of space-time, induced
by the presence of mass and energy. The Einstein field equation, at the heart of this
theory, describe how matter and energy influence the geometry of space-time and, in
turn, how this curved geometry guides the motion of matter and energy.

Indeed, the Einstein field equation, published for the first time on November 25,
1915, is the main partial differential equation of general relativity:

1

G =Ry — §gWR = 87CT—4GTW (2.3.1)
It is a dynamic equation that describes how matter and energy modify the geometry
of space-time. This curvature of geometry around a matter source is then interpreted
as the gravitational field of that source. The movement of objects in this field is
very precisely described by their geodesic equation. The metric g,, produces a family
of geodesics. Tt is noteworthy that particles with positive or negative gravitational
mass would behave in the same way by following the same geodesics when deflected
by the gravitational potential created by a significant mass M, for example in Earth
or solar gravity. Thus, a massive object, such as a star, influences spacetime not
only through its mass but also through the energy it emits, like radiation. In general
relativity, the energy of an object - including its rest mass energy represented by mc?
and any additional forms of energy like radiation - contributes to the gravitational field
it produces. This combined energy-mass contribution is what curves spacetime around
the object. Its second term accounts for the content of the universe at every point in

space-time :

e If it is non-zero, then the geometric solution that emerges from this equation
will describe the interior of a mass.

14



CHAPTER 2. THEORETICAL FOUNDATIONS

e If it is zero, the solution induced by this equation will refer to a completely
empty portion of the universe around this mass.

2.3.2 Observable Effects & Experimental Confirmations

Among the phenomena explained by GR is the deviation of the plane of rotation of the
planet Mercury when it is closest to the Sun, known as the precession of the perihelion.
This phenomenon was measured with a precision of 45 seconds of arc per century, a
value that could not be accounted for by Newton'’s law.

Mercury at
perihelion

Figure 2.1: Precession of Mercury’s perihelion

Another observed phenomenon is the apparent bending of light around the Sun.
During the solar eclipse of 1919, Sir Arthur Eddington noticed that light rays appeared
to bend around the Sun. In reality, these light rays follow the shortest paths in curved
spacetime, known as geodesics. This apparent bending of light is due to the deformation
of spacetime caused by the presence of mass, an effect that GR accurately explained

(122]).

15



CHAPTER 2. THEORETICAL FOUNDATIONS

Figure 2.2: Starlight Bending During the Solar Eclipse

These phenomena are considered non-linear because they can only be explained by
the theory of GR. However, under conditions where relativistic effects are negligible,
Newton’s law can provide valid approximations. GR has thus expanded our under-
standing of gravity beyond the limits of Newton’s law, paving the way for a better
understanding of gravitational interactions on a large scale and at high speeds.

2.3.3 Geometry of Spacetime & Geodesic Equation

Let’s recall Einstein’s equivalence principle regarding an inertial frame in free fall:

"In a gravitational field, it is always possible at any point in spacetime to
choose a locally inertial coordinate system such that, in a sufficiently small
region, the laws of physics are identical to those in the absence of gravity.”

In this free-falling frame of reference, the inertial force experienced by a freely falling
body cancels out the gravitational force, meaning that the object is not subject to any
force (a state of weightlessness). Therefore, the inertial frame is the fundamental frame
for studying interacting objects (referred to as the frame of special relativity) before
analyzing them in a second Galilean frame known as the "laboratory frame”, where these
objects are subject to the effects of gravity. This latter frame is, in fact, accelerated
upwards (a = —g) relative to the natural inertial frame (imagine that "the ground on
Earth is accelerating you upwards™).

In the theory of special relativity, an inertial frame is described by the Minkowski
metric, which is a mathematical representation of flat spacetime. This metric applies
in regions where the effects of gravity are absent. In such a context, object paths are
determined by the equations of motion derived from the principles of special relativity.

16



CHAPTER 2. THEORETICAL FOUNDATIONS

While "geodesic” is used in general relativity for curved spacetime under gravity, in
Minkowski metric of special relativity, these paths are better described as straight lines
representing constant velocity motion. In this framework, objects in inertial frames
move in straight lines at constant velocity, a special case of a geodesic in flat spacetime.

Inertial Frame and Coordinates

First of all, let’s position ourselves in this inertial frame and define the coordinates of a
point mass in this frame: We consider the coordinates £ with £ = ct, ¢! =z, €2 = v,
€ = 2 within the framework of our analysis. Since this body is not subjected to any
force (constant velocity), we can deduce that:

d2§o¢
=0 2.3.2
dr? ( )
With
dr? = cdt? — dz? — dy? — d2? (2.3.3)

Where 7 corresponds to the metric or interval in this space, which we could also denote
as s, and it’s important to note that this metric is invariant regardless of the reference
frame.

Coordinate Transformation to an Accelerated Laboratory Refer-
ence Frame

Let’s apply now a coordinate transformation into a new Galilean laboratory reference
frame that is "accelerated upward" relative to the previous inertial reference frame :

o O

However, each coordinate of the new Galilean frame depends on the coordinates of
the inertial frame and vice versa:

o€, €1, 6%,6%),  €'(a® at 0?2
And it must be remembered that £ depends on 7 :
() (2’ 2", 2%, 2%)

So, each parameter of ¢ in the new reference frame also depends on 7. Therefore,
we can deduce that:

a4t 08 it 08 i o | art og)

= — —_— —_— —_— 2.3.4
dr dr 9z°  dr Ozt dr 022  dr 023 ( )
This can be expressed using summation notation for repeated indices:
3
dée o0& dxt
A 0t de (2.3.5)

dr — &= dzr dr
n=0

17



CHAPTER 2. THEORETICAL FOUNDATIONS

NB: In mathematics, summation notation is a way to compactly represent the sum-
mation of a series of terms. When an indice appears both as a subscript and as a
superscript in an expression, it typically implies a summation over that indice, mean-
ing that all possible values of that indice are added together. This notation is commonly
used in various fields of mathematics and physics to simplify the representation of equa-
tions involving repeated indices.

Now, we wish to differentiate this expression once more to deduce the geodesic
equation 2.3.2, then:

d (dev\ d e dat [dex Pt
5(?) ~ (ax) ar <a) PR (2:3.6)

dav 026> dat  OE> d2aH

=0 2.3.7

dr Ozrdzv dr Ozt dr? ( )
To achieve summation over repeated indices as following:
oce 9xf S~ 9¢* 9aP

— X — = — X — 2.3.8

dur " 9Er ~ L= an  Bee (2:38)

We must do this operation:

0z8\ dav 9%¢* dazt 0> A%zt (028 0
oc« ) dr Oxrdxv dr  Oxr dr? \ 9> )

However, for § # u, the partial derivatives of one coordinate with respect to another
coordinate in the same coordinate system are zero (e.g., % = 0), and for 5 = pu, the
partial derivative is equal to 1. This corresponds to the Kronecker symbol (55):

oe | On7 027 (2.3.10)
oxr 9L~ Ot "

NB: When (8 and p represent different coordinates in the same coordinate system,
the partial derivative of 5 with respect to u is zero because it means these coordinates
are mutually independent in the system. However, when  and p represent the same
coordinate, the partial derivative is equal to 1, indicating that the coordinate changes
with itself, as represented by the Kronecker symbol (5£)

(2.3.9)

Thus, we obtain:

B v 2 ¢ o 2, .1
:<8:c)da: 0*¢e do +55dx (2.3.11)

o¢> ) dr Oxrdxv dr Hodr2?

d2zH d2z#

However, if we replace p with 3 (8 = p), then 0 = 65 =1, and &5 = &5
Consequently, we get:

B v 2 ¢a m 2.8
_ (898 ) dzv 0%¢* dz*  d*z (2.3.12)

o0& ) dr Oxrdxv dr * dr?

18



CHAPTER 2. THEORETICAL FOUNDATIONS

Therefore, by introducing the Christoffel symbols as follows:

oz’ 9%¢
M — 2.3.13
g Qxtox ( )
We can deduce the following equation of geodesics:
d2aP dxt dz”
S (2.3.14)

dr2 wedr dr

This represents a general expression for the Christoffel symbols Fﬁy in terms of the
derivatives of the coordinate transformation functions. The Christoffel symbols, as we
will see it later, are used in the mathematics of general relativity and differential geom-
etry to describe how coordinate systems change locally.

What does this equation of geodesics teach us?

e The second derivative of coordinates in the "accelerated” Galilean reference frame
is no longer zero but is equal to the equivalent of inertial forces applied in general
relativity (in this case, gravity). From 2.3.14, we can deduce:

d2zf dxt dx”
=T — (2.3.15)
dr? modr dr

Indeed, if ;1 and v are space coordinates, then their derivative with respect to 7

corresponds to a velocity.

e Any object in motion in the "accelerated" laboratory Galilean reference frame
will obey this equation when subjected to the force of Earth’s gravity.

e The form of this equation informs us about the shortest or longest (extremums)
paths on a curved surface (manifold). More precisely, geodesics correspond to
stationary paths whose physical properties remain constant over time (absence of
applied external forces).

e We can describe gravity as a purely geometric effect related to the geodesics
traversed by objects in curved spacetime (how spacetime is curved is described by
the Christoffel symbols). An analogy would be to consider two objects traveling
parallel, identical paths at the same speed from a point on Earth towards the
North; they will eventually cross at the North Pole due to Earth’s curvature. This
crossing can be analyzed either by the fact that a force attracted them (analogy
with Newtonian mechanics) or by a purely geometric effect related to Earth’s
curvature (analogy with relativistic mechanics). According to general relativity,
gravity is thus a curvature of spacetime that causes objects in locally straight-
line motion to follow these geodesics. General relativity allows us to determine
the curvature of spacetime based on its components (matter, energy) and then
describe the trajectories of moving particles within this spacetime.
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e The Christoffel symbols are calculated from the metric and its partial deriva-
tives, capturing information about the curvature of spacetime. They allow us to
calculate how geodesics are affected by the curvature of spacetime.

2.3.4 Definition of Tensors

Tensors are mathematical objects from multilinear algebra that were introduced in
physics to represent the state of stress and deformation of a volume subjected to forces,
hence their name (tensions).

To illustrate the nature of a tensor, let us consider a tensor function 7" that associates
two vectors® @ and ¥ to a scalar* T'(@, v) in the set of real numbers R. This function
must respect the following linearity conditions:

e The function produces a scalar, that is T'(u, ¥) € R.

e The multiplication of one of the vectors by a scalar & must conform to the property
of linearity, namely:
T(au,v) = oT(U, V) (2.3.16)

e The addition of two vectors in one of the function’s arguments is distributed
linearly as follows:
T(u+ wW,v) =T(u,v) + T (W, 0) (2.3.17)

A tensor can therefore be defined as an application or a function in a vector space
that associates a set of vectors with a scalar and must obey the following linear prop-
erties:

e When one of the vectors is multiplied by a scalar, the tensor multiplies the result
by that same scalar.

e When an addition operation is applied to one of the vectors, the tensor distributes
the addition through the result of the operation on both vectors.

In this context, our tensor is said to be of order 2, which means it takes two vectors
as parameters, and is thus qualified as bilinear. A tensor of order 1 corresponds to a

3These are rank 1 tensors which can be represented as a list of numbers (components) that change
in a specific way with each change of coordinate system.

4These are rank 0 tensors which are simply real or complex numbers and do not change depending
on the coordinate system used.
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vector. There are also tensors that can accept three or n vectors as parameters®.

Thus, tensors allow us to generalize scalars and vectors:

e Scalars:

Consider 2 coordinate systems, one x'* being the transformation of the first z#
according to the following relation:

ot — (2.3.18)

The scalar allows for the transition of a point from one coordinate system S to
a new coordinate system S’. Indeed, if we wish to transition a point M from
a Cartesian coordinate system S: a:“(m,y) to a new polar coordinate system S’:
z'*(r,0) (Figure 2.3):

y

Figure 2.3: Polar Coordinates

This transformation must be operated:

5These are called higher-order tensors, going up to order n
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S'(2'") = S(a*) (2.3.19)

e Vectors:

Consider the following figure 2.4:

y

>

Figure 2.4: Vector in Polar Coordinates

Let’s express the coordinates of the vector in terms of 7,8 in the new coordinate
system as well as in terms of new base vectors (., ip):

U(z,y) = vz, y) Uy + vy(z,y)U, (2.3.20)
/l;;(T', 9) = ’UT(T7 9>ﬁr + ’U@(’I‘, 9)719 (2321)

Thus, a scalar is a simple number that is associated with each point in space, while a
vector is characterized by a magnitude, which is its norm, as well as a direction in space.
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The transformation of vectors from one coordinate system to another is a more
elaborate operation than the transformation of scalars. There are mainly two types of
vectors, each with its own rule of transformation:

e Contravariant vectors: these transform by deriving the coordinates of the new
reference frame x/# with respect to those of the old x”. The law of transformation
is given by:

ox'*
oxv

e Covariant vectors: in this case, the transformation is performed by deriving
the coordinates of the old reference frame z with respect to those of the new z/~.
The rule of transformation is expressed by:

v ox

7 ax/p,

Vi =

Vv (2.3.22)

v, (2.3.23)

These relations illustrate how contravariant and covariant vectors transform under
a change of coordinates.

Proof. Consider an elementary displacement vector that connects 2 distinct events in
spacetime separated by (dt’,da’,dy’,dz’), which can collectively be denoted as dz'™.
Then:

ox'™
oxv
However, the total differential of a function f(z,y, z), which measures the variations

of f with respect to its variables x, vy, z, also incorporates the changes in its implicit
variables according to the following relationship®:

da™ =

dz” (2.3.24)

of dx of dy of dz of of of
d t),y(t),2(t) = =——dt+ ——=dt + =——dt = ——dor + =—dy + = 2.3.25
Fla(t),y(t),2(t)) = 5 -4 Tyt o a T z ( )
Hence the contravariant elementary displacement vector’:
ox'* ox'*
s — v Y — v
dx D dz” &V D V
[]

6Indeed, when the variables x, 3/, z are themselves functions of another implicit variable, ¢, a variation
in ¢ induces a variation in each of the variables x,y, z through their derivatives with respect to ¢. In
other words, the variation in ¢ results in variations in z,y, z that are quantified by their derivatives
with respect to t. Consequently, the total differential of f with respect to ¢ involves the use of partial
derivatives of f with respect to its variables x,y, z, as well as the derivatives of these variables with
respect to t, to capture the full effect of variations in ¢ on f

"Where 4 can take the values 0,1,2,3.
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We will now demonstrate that the norm of the vector V is given by the following
relation:
Vv,V = |V|? (2.3.26)

Proof. Consider a non-orthogonal frame (Ozy) in figure 2.5 in which the vector V has
both covariant and contravariant components.

I"v"l:::
-
O VA Vx
X
Figure 2.5: ||V||2 = v,0" + v,0¥
Hence, we obtain:

v? = h2 + v’ (2.3.27)
(V)2 =h*+ (v y —v¥)? (2.3.28)
(v*)? = h?* + 0] + (v!)* — 2v,0" (2.3.29)
(v°)? = v + (v¥)* — 2v,0Y (2.3.30)

v? = (V) — (v¥)? + 20,0Y (2.3.31)

However, the second right-angled triangle allows us to obtain the following relation:

v? = (vY)? — (v7)? + 200" (2.3.32)
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By summing the two, we can therefore deduce that:

v? = 0,07 + v,0Y (2.3.33)

Thus, a rank 2 tensor simply allows us to manipulate two indices instead of one:

e Covariant:

. %%‘Z » (2.3.34)
e Contravariant: , W
T _ ga;: gzﬁ o (2.3.35)
e Mixed:
. 02 02" (2.3.36)

oo Qxr 9B

We deduce that a rank 2 tensor is, essentially, a matrix or a two-index array that
represents a physical quantity in a given space.

Let’s observe the transformation of a rank 2 tensor from one coordinate system to
another, using the partial derivatives g;”; and gjﬁ to establish how the coordinates in
the new system z/# are related to the coordinates in the old system x®. By applying
this transformation to the initial rank 2 tensor 7,5, we obtain a new tensor 7}, of the

same rank in the new coordinate system.

Now, to perform a tensor transformation from its contravariant to its covariant form,
or vice versa (using implicit summation over v), it is necessary to introduce the metric
tensor®, with the following relations illustrating this transformation:

Vi, = gV (2.3.37)
V, Vi = gl Vv, (2.3.38)
VHE = g"V, (2.3.39)

Indeed, as we will study in the following section, the definition of the metric tensor®

is expressed by the relation 2.3.52.

8which will be studied in the following section.
9which transforms coordinates from an inertial frame to any frame such as a Galilean frame.
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Let’s try to express this metric tensor in another reference frame:

, og~ a¢?
gp,y = frlaﬁw al’lu (2340)

0> 0x7 &P Oz

G = N85z oo 5 (2.3.41)
0> 98P 0z Ox”
Gy = e85 525 57 B (2.3.42)
Then:
0z Ox”
g:w = napax,lu w (2343)
(2.3.44)

This clearly demonstrates that gl’w is indeed a tensor since tensorial equalities
(among tensors of the same type) hold true in all reference frames.

Tensor Properties:

e Any linear combination of tensors is a tensor'’.

e The product of two tensors results in a higher-rank tensor. For example, for a
rank-2 tensor, T),,, where ;1 and v can each take 4 values, the product with another
rank-2 tensor results in a rank-4 tensor with 4 x 4 = 16 components, giving a
total of 16 x 16 = 256 components. Thus, if two rank-2 tensors are multiplied, the
resulting tensor is of rank 4. The total number of components of the new tensor
is the product of the number of components of the two initial tensors.

e The contraction of two tensors yields a tensor'! according to the following relation:

T,V =W (2.3.45)

2.3.5 Metric Tensors

We will now delve into metric tensors and their connection with the previously deter-
mined Christoffel symbols.

Consider the Minkowski metric described using the spacetime coordinates of an
object in motion within an inertial reference frame, as shown in equation (2.3.3), and
expressed as:

dr? = (d€")” — (dg')* — (dg?)* — (d¢¥)” (2.3.46)

9Considering two tensors A, and B,,, and two scalars a and b, then C,,, = aA,, +bB,,, is also a
tensor. This property arises from the definition of tensors in terms of their behavior under coordinate
transformation, which preserves linear operations.

Uhy implicit summation over the corresponding indices « of the two tensors.
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It can also be written in this way, where one can denote a summation over indices
« and f:
d7? = n,pdeade? (2.3.47)

This equation uses the metric tensor 7,4 of Minkowski space (which describes flat
spacetime in special relativity) to calculate the spacetime interval d72 in terms of the
differentials of the coordinates d¢é® and d¢”. The Minkowski metric tensor Nap has
components that are -1 for time-like intervals and +1 for space-like intervals on the
diagonal, and 0 off the diagonal like this:

10 0 0
0 -1 0 0
0O 0 0 -1

Let’s recall that next expressions represent the differential transformation rules be-
tween two coordinate systems. They demonstrate how a small change in the set of
coordinates x* and 2" results in a small change in an another set of coordinates £“ and

&
de™ = %dxﬂ (2.3.49)
B
d¢? = %dx” (2.3.50)

Now, if we substitute these two differential forms into the expression 2.3.47, we can
deduce the following expression:
9E> OEP

Oz Ozv

A7 = 1Nags dztda” (2.3.51)

From where one can extract the following metric tensor:

e oeP
e =100

(2.3.52)

The metric tensor plays a fundamental role in general relativity as it determines
the geometry of spacetime and how gravity acts between two objects located at co-
ordinates x* and z” in the same reference frame. It enables the transformation from
the coordinates of these objects to the distance that separates them, while taking into
account the local curvature of spacetime, which can vary depending on the distribution
of matter and energy. Unlike classical intuition, the distance between two points in
curved spacetime depends on this curvature and can vary significantly. Therefore, the
metric tensor is a crucial mathematical tool for calculating the interval between two
events, which also includes the measurement of the time elapsed between them in the
presence of a gravitational field.
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Since the indices p and v are dummy and repeated, they are subject to Einstein’s
summation convention and can thus be interchanged in the metric tensor expression.
This implies that the metric tensor g, is symmetric'2.

NB : Now, let us denote g"” as the inverse of g,,,, which is expressed by the following
relation with a summation over the repeated indice «, yielding the Kronecker symbol:

9" Gow = OF (2.3.53)

where 0% is the Kronecker symbol, which as we have seen previously, equals 1 when
i = v and 0 otherwise. This relation defines the nature of the inverse of the metric
tensor in differential geometry and general relativity.

2.3.6 Christoffel Symbols

The Christoffel symbols, denoted by Fﬁy, are derived from the metric tensor and provide
essential information about the geometry of spacetime. They are not tensors themselves
but are derived from the metric tensor, which is a true tensor.

To calculate the Christoffel symbols, we take the partial derivatives of the metric
tensor components and then apply a specific combination of these derivatives. The

formula for the Christoffel symbols of the second kind is given by:

1 0o 0Ga 09,
B _ B L H
Duw =59 ( 5o T B axa) (2.3.54)

Each term involves a partial derivative of the metric tensor with respect to the
coordinates, and ¢”® is the inverse of the metric tensor, ensuring that we are summing
over the appropriate indices. As we will see later, Christoffel symbols play a central role
in determining geodesics, which describe the trajectory of particles and light in curved
spacetime and are used in the equations of motion in General Relativity.

Proof. We will now express the Christoffel symbols in terms of the metric tensor g,,.
To do this, we consider the partial derivative of g,, with respect to the coordinates
2*. This operation introduces the second derivatives of the coordinate transformation
functions £, which can then be incorporated into the expression for the Christoffel
symbols 2.3.13.

Before we begin our calculations, here are a few preliminary tips to simplify them:
e The metric tensor is symmetric, hence g,, = g,

e To replace v with «, we must first substitute the existing dummy indice a with
.

12 —
Juv = Gup
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We obtain the metric tensor as following:

9¢7 9Ed
Gop = naﬁ@ s (2355)

By applying the product rule for differentiation, and remembering that 7,5 is a

constant, we get:
9o 0 0L 9P
oz v \77 9rn e
We see the expected second partial derivatives appearing in the right-hand side of
the equation (twice):

(2.3.56)

op ¢ o¢P og” 9%’
L s e P ey e e
To integrate the expression for the Christoffel symbols 2.3.13 into this relationship,

we must apply the following transformation to both sides to isolate the partial derivative
and introduce a sum over the repeated indice [:

(2.3.57)

4 ozP 92N 0¢°
— T = 2.3.58
dxhB 1M 9N Dardxv <8xﬁ) ( )
However, we know that:
ozP oge  o¢e
= =05 2.3.59
N ( )
and according to 2.3.53, this Kronecker symbol equals 1 when o = A, thus:
) A 82 A
9 s _ _O¢ (2.3.60)

OxB M Jrrdry

We can then replace it in expression 2.3.57, ensuring that we reformulate the corre-
sponding indices in the new expression analogously:

82§U aé'a

oo = gL (2.3.61)
2.5 B

O 0y, (2.3.62)

OxvOxr  Oxr *
NB : We do not place 8 on the Christoffel symbol because it is a dummy summation
indice in the term where we want to assign it, so we will choose another letter, p:

ap 0%¢7 0¢P 08 0%k

=N —— + Nog = 2.3.63
L Yo, Ty PR L s g ( )
Finaly, we can deduce from 2.3.57:
9gap o’ ., o€’ 97 o¢?
= Nopg—1" —— + 1, —TI” 2.3.64
drv 1P pe W hga o B Oam Oar” v ( )
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Therefore, the differentiation of the metric tensor can be expressed in 3 different
ways (the last 2 involving new indices by swapping v and p and replacing p with «):

OGau

g 9ol + Gupl'he (2.3.65)
0Gav

ozt = gﬂarz,/ + gl/pFZa (2366)
O _ o 1 re 2.3.67
W_gpﬂ au+gl/p po ( )

These three ways of expressing this differentiation allow us to obtain a simplified
result by adding the first two and subtracting the last one: 2.3.65 + 2.3.66 - 2.3.67:

Go 0, — (ag“‘“ 4 e _ 89“”) (2.3.68)

w9\ ggv oxH ox™
1 (09 OGva  0Gu
I L o 2.3.
I et = 3 <8:1:V * ozr oz )Y (2:3.69)
1 (dg Ova  OGuw
o8P = = pa N po 2.3.
) <8x” + oz ox® g (2:3.70)
So, finally:
1 (39 o agya 39 v
8 = g% = — 2 2.3.71
w =59 (835” * Ox# aa:a) ( )

This expression of the Christoffel symbol'? enables us to establish a connection between

the curvature of spacetime induced by gravitational force and the spatial derivatives of
the metric tensor. It is essential for formulating the equations governing geodesics in
the theory of General Relativity. OJ

Example of Calculating Christoffel Symbols for a Spherical Metric:

In spherical coordinates, the line element ds? for a three-dimensional space is expressed
as:

ds® = gudatdx”
ds? = gn(dxl)2 + 2g1odatda? + 2g13datda® + ggg(dZL’Z)Q + 2go3da’da® + ggg(dx3)2
ds? = dr? + r2d6? + r? sin*(6)d¢*
(2.3.72)
where dr, df, and d¢ are the differentials of the radial coordinate r, the polar angle
¢, and the azimuthal angle ¢, respectively. The corresponding metric tensor g, in
spherical coordinates is diagonal and is given by:

13 Also known as the affine connection.
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g1 912 913 10 0
Juw = 921 G22 go3| = |0 r? 0 (2.3.73)
931 32 933 0 0 rZsin®*(0)

Proof. The relationship between cartesian and spherical coordinates can be deduced
from the Figure 2.6:

P(x,y,z)
Pip, 0, )

P'(x,y,0)

Figure 2.6: The position of point P is defined by the distance p and the angles 6
(colatitude) and ¢ (longitude)

If we consider triangles OPQ and OPP’, we have: z = pcos¢, r = psin ¢, where
x =rcosf and y = rsinf. Therefore:

x = psin¢gcosf
y = psin¢sinf (2.3.74)
Z = pcos ¢
Using the physical notations according to the Figure 2.9, the transition to cartesian
coordinates is given by:
x =rsin¢cosd
y =rsingsind (2.3.75)

Z=1rCcoso

However, the metric in cartesian coordinates is given by:
ds® = da® + dy® + dz? (2.3.76)

To express this in spherical coordinates, we replace z, y, and z with their equivalents
in spherical coordinates, yielding 2.3.72. U
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To compute the Christoffel symbols Ffw, we first find the inverse of the metric tensor,
which for a diagonal metric is simply:

10 0
gv =10 % 0 (2.3.77)
1
0 0 r2sin?(6)

For the given metric tensor, we calculate the partial derivatives required for the
Christoffel symbols:

9900

2900 _ o

or "

09s6 _ o i 2

o = 2r sin*(0),

09s6 _ o 2

90 = 2r°sin(0) cos(0).

Inserting these partial derivatives into the formula for the Christoffel symbols 2.3.71,
we calculate them by summing over the repeated indice . For the given metric tensor,
most of the Christoffel symbols will be zero because it is diagonal and only depends on
r and #. The non-zero Christoffel symbols are:

Ty = —T (2.3.78)

Iy, = —rsin®(0) (2.3.79)
1

rf,=r4 =- (2.3.80)
T

I, = —sin(f) cos(f) (2.3.81)
1

e, =r% == 2.3.82

ro = Lor = (2.3.82)

Iy, =9 = cot(6) (2.3.83)

NB:

e The Christoffel symbol I', is calculated as follows:
1 9900
I = —g" | —

00 2g < oz’
since the only non-zero derivative of ggy is with respect to r. Substituting the
values, we get:

1 o(r?)
Iyy==1{- =—r
) < or :
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e Another example is the Christoffel symbol I'?), which is calculated as:

T’ :1 00 [ O9ro | OGee B 9gre
=99 \ 920 T Grr 9t

where the only non-zero term is %gx“’f . This gives us:

o _ Lo (P90 _1(1 _!
Fro = 29 or ) 2 \r? (2r) = r

Calculating the Riemann Tensor, Ricci Tensor & Ricci Scalar

In this spherical space, all components of the Riemann tensor and the Ricci tensor, as
well as the Ricci scalar, are zero, illustrating flat space geometry.

Proof. The Riemann curvature tensor is defined by the expression:

R, =000, — 9,10, +T0 ) —T0 T, (2.3.84)

ouY I

Taking for example the Christoffel symbols provided by 2.3.78:

F‘sz) = —sin(@) cos(0),

~—

(2.3.85)
F?"G = Fzr =

S|

We can proceed to compute the components of the Riemann tensor. As an example,

we'll calculate RY, :

RO, = 0,T% — 0,19, + 19, —TT) (2.3.86)

rOr

Thus, for the calculation of the Riemann tensor component RY, | we have:

e The first term 9yI'? is zero since 'Y, is zero.

e The second term 0,I') involves the partial derivative of I'), with respect to r,
which is —7%2.

e The third term is the sum over A of T'9,I"2 | but since I'}. is zero for A # r, this

T

term is zero.

i

e The fourth term is the sum over A of I',I') , which for A = 6 gives (1) (1) =

The sum of the two non-zero terms (terms 2 and 4) is:

11
—5t5=0

Thus, the component R, of the Riemann tensor is zero.
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The Ricci tensor, obtained by contracting the Riemann tensor over its first and third
indices, is given by:

R, =R (2.3.87)

N2

Finally, the Ricci scalar, which is the trace of the Ricci tensor, is calculated as
follows:

R=g"R,, (2.3.88)

As the Riemann tensor is zero, it follows that the Ricci tensor and its scalar are also
Zero.

]

Mathematica calculation code:

(¢*Import packagex)

(* *)

Needs | "OGRe‘ " |

(* Definition of the coordinates x)

TNewCoordinates ["Spherical", {r, \[Theta|, \[Phi]}]

(¥ Definition of the Metric Tensorx) TShow@
TNewMetric|["SphericalMetricTensor", "Spherical",
DiagonalMatrix|{1, r~2, r~2 Sin|\|Theta||~2}]]

(#*Line element using integrated function TLineElement )

TLineElement |"SphericalMetricTensor" |

(¥ Calculation of the Christoffel symbols using TCalcChristoffel %)

TList@QTCalcChristoffel ["SphericalMetricTensor"|

(¥ Calculation of the Riemann Tensor using TCalcRiemannTensor )

TList@TCalcRiemannTensor ["SphericalMetricTensor" |

(x Calculation of the Ricci Tensor using TCalcRicciTensor x)

TList@TCalcRicciTensor ["SphericalMetricTensor"|

(¥ Calculation of the Ricci Scalar using TCalcRicciScalarx)

TList@TCalcRicciScalar ["SphericalMetricTensor"|

2.3.7 Application of the Geodesic Equation in the Weak Field
Limit

We denote the expression of the Christoffel symbol and the geodesic equation as follows

(if v = 0: time coordinate, otherwise it is a spatial coordinate x,y, z):

1 ag
Py = 59" Guow + Guoss = Guvo) (2.3.89)
dZa? y dat da”

i — 2.3.
ds? t o ds ds 0 (2.3.90)
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where
0o _y
ox? Hov

(2.3.91)
NB :

e This equation represents the partial derivative of the metric tensor component g,,,
with respect to the coordinate ¥, and it’s often written with a comma followed
by the indice of differentiation, which in this case is v. The comma notation g,
is a common shorthand in general relativity for denoting partial derivatives of
tensor components.

e In the context of special relativity, it is common to use a system of units where
the speed of light ¢ is defined as equal to 1 (¢ = 1). This simplifies equations and
allows for the easier expression of certain quantities. In this unit system, distances
are expressed in units of time (for example, light-years instead of meters) due to
the equivalence ¢ = 1. To do this, time must be expressed in seconds, and the units
of length become a distance traveled by light in one second, which is expressed
in light-seconds (equivalent to "light-years"). We can thus express the metric as
follows:

ds* = dr? = g, da*dx” (2.3.92)

Nevertheless, we will now consider that the time ¢, expressed up to this point, will
be the proper time 7 in the metric expression, in order to express it as follows:

ds* = dr? — da? — dy* — dz? (2.3.93)

We will now demonstrate that the equation 2.3.90 reduces to the Newtonian equation
of motion when gravitational fields are weak and static'*, and when velocities are much
smaller than the speed of light'®, which can be expressed as follows:

G = v + Py with hyy < Ny (2.3.94)

NB : In the theory of linearized gravity, we start by assuming that spacetime is
nearly flat. To do this, we represent the total metric tensor g,, as the sum of the
Minkowski metric 7,,, which describes flat spacetime as seen before, and a small "per-
turbation"” h,,, which represents deviations from this flatness due to the presence of
mass or energy. We will see it later on the dipole repeller study for a stationary system.

By integrating this metric tensor into the expression 2.3.89, we realize that the
partial derivatives of the metric tensor depend only on h,,, since 7,, is constant and its
derivatives are zero. Hence, in the linearized theory of gravity, the Christoffel symbols
can be approximated by considering only the contributions from the perturbation h,.
This is because the Christoffel symbols are defined by the first derivatives of the metric

141n special relativity where Juv is very close to 7, and time-independent.
By/e < 1
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tensor, and in a weak gravitational field, h,, is small compared to 7,,. Thus, when we
calculate the Christoffel symbols for a weak gravitational field, we neglect the derivatives
of 1, and take into account only the derivatives of h,,. Thus, we obtain:

Guow = Npo  and  Guvo = Mo  and  Guop = huop (2.3.95)
1 g loa
F/);u = 5(77)\ + h)\ )(hug,u + hua,,u - h/,Ll/,o') (2396)

Given that h,, is small, we realize that the product of h*? with its partial deriva-
tives will contribute terms that are second-order or higher (e.g., h%, h3 etc.). These
higher-order terms will be significantly smaller compared to the first-order terms we
are interested in. Therefore, when computing the Christoffel symbols, we neglect the
products of h,, and its derivatives, which implies that the contributions from h are
negligible in comparison to those from 7. Consequently, we obtain:

D0~ =0 (Mo + oy — o) (2.3.97)

DO | —

This approximation streamlines the process of computing spacetime curvature in
weak gravitational fields and is foundational in the analysis of gravitational waves,
where the perturbations h,, represent ripples in the curvature of spacetime.

Now, let’s consider 2 cases :

e For A\ = 0, which corresponds to the time coordinate in general relativity, the
equation for the Christoffel symbols of the first kind becomes specific to the time
coordinate. Utilizing the Minkowski metric tensor 7 and the perturbation h, the
Christoffel symbol for A = 0 is given by the equation:

1 o
ng = 5770 (hua,u + hua,u - hw/,a) (2398)

Now, considering that % is not zero only when o = 0, which leads to n% = 1,
we arrive at the following relation:

1
F?l,l/ = 5 (huo,l/ + hl/O,,u - hp,u,O) (2399)

However, given that the gravitational field is static'®. Consequently, the partial
derivative of the metric tensor with respect to time (8—?);&) is zero. This allows
us to consider the system as being in a stationary regime with respect to the
spacetime metric:
1
T = 5 (Mo + huo,) (2.3.100)

16The spacetime metric does not vary with time.
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e For spatial coordinates denoted by A = ¢ (where i, j, k represent spatial indices),
the Christoffel symbols can be computed using the perturbation metric h,,. The
Minkowski metric 1" is used to raise the indice, and it is equal to —1 when the
indices match. Thus, the Christoffel symbols for spatial coordinates are given by:

) 1 s
Thw = 31 (s + hugs = ) (2.3.101)

However, considering the negative sign of the spatial components of 7%, the equa-
tion for ¢ = i simplifies to:
, 1
F:u/ = _5 (h,ui,l/ + hl/i,p, - huu,i) (23102)

This negative sign reflects the opposite sign convention for the spatial components
of the Minkowski metric in comparison to the time component.

Now, let’s integrate these results into the geodesic equation 2.3.90 for each case:
e For A = 0, we know that 2* = 2% = ct, then:

%t 1 dx* dz”
2 4~ (huow + huo ) — =0 2.3.103
c d32 + 2( 10, + Ovﬂ) ds dS ( )

However,the following product will generate a sum over repeated indices p and v
of quantities of orders 0, 1, and 2:

dxt dx”
hyow + hwou) ———— 2.3.104
Considering that higher-order quantities, specifically of order 1 and 2, are highly
negligible, particularly since they are based on the already small quantity h,,
which is much less than 7,,, we will only retain the zeroth-order terms. In this
context, zeroth-order refers to the terms where p and v are both equal to 0,
which correspond to the temporal components. This simplification leads us to
the following equation:
d’t 1 de dt
2 2
— + = (hopo+ h —— =0 2.3.105
Sy + 2( 00,0 + o) € s ds ( )
In this approximation, only the terms involving the time coordinate contribute
significantly to the equation of motion, simplifying the analysis of spacetime

geodesics in a weak gravitational field.

However, given that the gravitational field is static, these quantities are zero,

then: 2
t
2
— = 2.3.106
12 ( )
This implies that ¢ is proportional to s, which means:
s=ct (2.3.107)
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e For spatial coordinates denoted by A = i, from 2.3.107, we obtain:

1 d%t 1 1 da* da”
@ a7 e v = ) G g
However, as mentioned earlier, we will only keep quantities of order 0 for p and
v which are equal to 0. Due to the static nature of the gravitational fields, we

obtain the following equation:

=0 (2.3.108)

1 d%2t 1

S 4 5hoo. =0 (2.3.109)
d?z’ c?
dt2 - —Eho()ﬂ' (23110)

Since 7 is a spatial indice taking values 1, 2, or 3, we thus find a form of "Accel-
eration - Force” equivalence that can be represented in vector form:

427
d—tg — _grads (2.3.111)
with 2
¢ =" o (2.3.112)

The connection between the gravitational potential and the temporal component of
the metric tensor can be established by introducing 2.3.112 into 2.3.94, thus we obtain:

2
goo =1+ c—f (2.3.113)

The gravitational potential ¢ is equivalent to a speed squared (c?). Knowing that
hyw < M, we can locally verify that for Earth, hgy = 20— 26 M _ 1079 « Moo = 1

c2 Rec2
using the well-known expression for gravitational potential calcﬁlation:
GM
= — 2.3.114
0= (23.114)

2.3.8 The Solutions of Karl Schwarzschild & Ludwig Flamm

Karl Schwarzschild then developed a complete geometric solution to this equation,
consisting of two metrics published in two separate papers'’, whose expanded forms'®
are as follows:

e The first solution, described by metric 2.3.115, depicts the exterior geometry
of empty spacetime around a spherically symmetric mass, such as a star with a
radius r,, as illustrated in Figure 2.7:

8tGpr? dr?
ds? = (1 Z20m ) 2q2 - S0 2 (462 +sin20d¢?)  (2.3.115
3c2r 1— 8nGpry
3c2r
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S—=

Figure 2.7: Portion of a Flamm hypersurface

e The second solution, often referred to as the interior Schwarzschild solution
structured by metric 2.3.116, describes the spacetime geometry within a static,
spherically symmetric body composed of an incompressible fluid, such as a star
with a radius r,, as depicted in Figure 2.8:

2 dr? 2 (102 1 win? 2
ds :—w—r (de -+ sin 9d¢ )
C

2
3 8rGpr2 1 8nGpr?| , 5
S el L Ty f dt
- [2 32 2 32 | €

C—

Figure 2.8: Portion of a sphere

(2.3.116)

This approach entails matching two segments of spacetime solutions, specifically two
regions of hypersurfaces, each characterized by their distinct metrics. The matching is
performed at a common boundary, ensuring the continuity of the spacetime geometry
and the physical consistency of the combined solution across the interface.

That same year, a young mathematician offered his own interpretation of Schwarzschild’s
work. His name was Ludwig Flamm. His work and his name remained unknown to most

17169] and [68]
18 [1]
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cosmology specialists for a simple reason: his paper was not translated into English un-
til 2012. He had a perfect mastery of the geometry of objects such as three-dimensional
Riemannian hypersurfaces (|27],[28]).

Kruskal, building upon the exterior Schwarzschild metric, developed his renowned
model, considered as the foundation of black hole theory. Indeed, by analytically ex-
tending the exterior Schwarzschild solution, he eliminates “algebraically” the coordinate
singularity found at the “event horizon” for r = R4 (Schwarzschild Radius), through the
introduction of a new coordinate system. This system is designed to make the metric
regular everywhere, except at the “central physical singularity” for r = 0 (|37],[71]). But
does this model truly have a physical meaning ?

2.3.9 Construction of Geodesics for the Schwarzschild Exterior
Metric

Let’s consider the Schwarzschild exterior metric (6.53) extracted from [1] (Page 194):

_ 2m
T

2
ds? = (1 — 277") (dz®)? — <1L) — r%(d#* + sin® 0 dp?) (2.3.117)

where m is a simple integration constant (a length), 2° is a chronological marker (also
a length), and s is the length measured on the 4D hypersurface.

The authors write:

20 = ct (2.3.118)

A geodesic is a path inscribed on the hypersurface, which corresponds to a minimal
length:

(5/ds —0 (2.3.119)

This means that this length:

b 2 2
/ { (1 = —m) At — b2 (46?4 sin? 9d¢2)} (2.3.120)

r
-

has a minimal value along a path thus configured: ¢(s), r(s), 6(s), &(s).

Let’s write: U q 40 a0
. . r . .
=% T T T

This amounts to searching for paths that minimize:

b ) ) 52 . .
/ { (1 - —m> P - L (62 + sin® 0¢2)} ds (2.3.122)

r
T

(2.3.121)
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The quantity in brackets is:
L=L(tr0, ¢t 0,¢) or L=L(x' i) (2.3.123)

This problem was solved by the French mathematician Lagrange, which led to what
are now known as the Lagrange equations.

The calculation of the geodesics is a problem of “bounded extremum”. This is because
we consider all paths connecting two points a and b, hence linked to these points. The
geodesics are then given by the equations:

d /0L oL

om\ . 2 | .
L= (1 - —m> 22 — IT’—Zm 12 (62 + sin? 007 (2.3.125)

r

With:

oL 0L oL -
= = i 2 2.3.12
o~ 99 0, 20 r*sin 6 cos O¢ (2.3.126)

The first three Lagrange equations (6.75), (6.76), (6.77) extracted from [1], corre-
sponding to the variables 6, ¢ and t, are the following:

d

d—(r29) — % sin 6 cos 0> (2.3.127)
s

%(Tz sin? ) = 0 (2.3.128)

% [(1 _ 277”) ,5] _0 (2.3.129)

If we divide each term of the metric 2.3.117 by ds*:

2 . 2 . .
1= (1 - —m> e S (92 + sin? 9¢2> (2.3.130)

r 1—2m
T

In general relativity, exploiting the spherical symmetry of a solution can simplify
the analysis of geodesics. In the case of the Schwarzschild metric, which is indeed
spherically symmetric, this symmetry can be exploited to reduce the problem to two
dimensions.

The Schwarzschild metric, in spherical coordinates, depends on the variables r, 0, ¢,
and t. Spherical symmetry indicates that the metric does not change when rotations are
made around the center. This property allows us to simplify the problem by choosing
geodesics that remain in a constant plane. It is common to choose the equatorial
plane to simplify calculations, corresponding to setting # = 7/2. In this plane, the 6
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coordinate does not change, which means that dé = 0 and therefore the component of
the metric involving dé disappears (see the Figure 2.9).

Figure 2.9: Unit vectors in spherical coordinates

Then, by examining the Lagrangian (which is a function that summarizes the dy-
namics of a system) associated with this metric, we can find the equations of motion for
the geodesics. For an object moving in the equatorial plane, the azimuthal component
of its angular momentum, related to ¢, is conserved, which is a consequence of the axial
symmetry of the metric with respect to the axis perpendicular to the equatorial plane.
Mathematically, this is expressed by the equation:

¢ = h = constant (2.3.131)

where h is a constant of motion (angular momentum per unit mass), r is the radial
coordinate, and ¢ is the derivative of the azimuthal coordinate ¢ with respect to proper
time s (the time measured by a clock moving with the object).

This tells us that the quantity r2¢ remains constant along the geodesic.

The equation 2.3.129 above integrates and gives:

2 .
(1 - _m) t = | = constant (2.3.132)
r

By substitution, we then obtain the differential equation:

A om\ ! 2
1= (1 - —m) A2 — <1 - —m> 2 (2.3.133)

r

which gives r as a function of the parameter s. But by using an equation presented
earlier, we can switch to a differential equation featuring the derivative:

(2.3.134)
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From 2.3.131 and 2.3.132, we then obtain:
= ¢r' = =1 (2.3.135)

We can then obtain the differential equation relating r and [:

2 h? h? 2
(1 _ _m) =22 (1 — _m> (2.3.136)

dr du
Which leads us to:
(1 —2mu) = *1* — h*u® — h*u*(1 — 2mu) (2.3.139)
which reduces to:
212 -1 2
w? = (CT> n h—Tu — 2 + 2mal® (2.3.140)
Thus, from 2.3.138, the integration gives:
v dv
¢ = do + / — (2.3.141)
up \/clh_;l + Zh_rgv — 02 4+ 2mad

This constitutes an exact solution to Einstein’s equation which expresses the angle ¢
as an integral of u = %, and conversely it gives us u as the inverse (implicit) function of
¢ and results in “quasi-elliptical” geodesics, depending on the two integration constants
[ and h.

Indeed, if A is large, it means that the geodesic traversed by a test particle will
deviate from a radial free-fall trajectory because it will have a significant amount of
specific angular momentum. Consequently, its trajectory will be less affected by the
gravitational pull directly towards the central body, causing it to veer away from a
direct radial fall and follow a more curved or “quasi-elliptical” path.

Ignoring the region inside the Schwarzschild sphere (r<-2m), it is possible to represent
in 3D the plane geodesics associated with this stationary metric. The representation
of the Schwarzschild sphere, can be envisioned as a circle that projects into spacetime
along the Schwarzschild time dimension ¢,. If we consider a neutron star with a radius

43



CHAPTER 2. THEORETICAL FOUNDATIONS

of 10 km, it will remain stable at the Tolman-Oppenheimer-Volkoff (TOV) limit of
approximately 2 solar masses. The TOV limit represents the critical maximum mass
a neutron star can have while remaining stable. This places the "horizon’ of a point
mass equivalent at a distance from its center of about 6 km (ry = a). Given that the
star’s radius is approximately 3/2 times r,, we position the "horizon’ of this object at
rs = 2 for a radius of 3. A french Internet user, R.M., using Mathematica, has represented
the geodesic of a test particle following a falling trajectory toward this object, as depicted

in this Figure 2.10

R Cos|¢]
-4
o

R Sin[¢) 20 -~ Y

10 - & &

/30

/
lodiigde

O -4-20 2

R Cos[¢]

Figure 2.10: Representation of a Falling Geodesic in the Coordinate System (r, ¢, t5)

Regardless of the geodesic’s direction of travel, centripetal in this case, with this
choice of temporal coordinate, approaching the Schwarzschild sphere would require an
infinite duration. Indeed, as we can see Figures 2.11]and for a distant observer,
any object approaching the horizon of either a neutron star near its physical criticality
or a supermassive object, such as those whose alternative approach will be studied in
the chapter 8] would experience time dilation near what is known as the Schwarzschild
radius. However, for the object itself (or an observer moving with the object), time
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would continue to progress normally (Respectively, the blue curve compared to the
dashed curve).

Time Dilation for a Distant Observer

Distant Observer Time

Proper Time

Figure 2.11: Time Dilation for a Distant Observer

Time Dilation Approaching the Object's Horizon
— T T T T T T T T

1]

Figure 2.12: Time Dilation Approaching the Object’s Horizon
From the perspective of this distant observer, the object would take an apparently
infinite amount of time to reach this horizon. As a result, it would be perceived as

slowing down progressively, appearing almost frozen or making a freeze-frame near the
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horizon.

This phenomenon is a consequence of general relativity, which predicts that the
presence of a significant mass curves space-time. This curvature affects the passage of
time, leading to time dilation in intense gravitational fields.

This aspect forms one of the cornerstones of black hole theory. But is there another
alternative? This is what we will explore later in the chapter 6.

2.3.10 The Solution of Roy Kerr

In 1963, Roy Kerr, an eminent New Zealand mathematician, revolutionized the under-
standing of general relativity in the context of the black hole model by proposing a
new solution to the Einstein’s field equation. Unlike the Schwarzschild exterior metric
(]69]), which is used as the foundation of the static and spherically symmetric black
hole model, the Kerr solution is axisymmetric, representing a rotating black hole ([34]).
This discovery was particularly significant at the time because it provided a more real-
istic model for numerous celestial objects.

The Kerr metric is expressed in Boyer-Lindquist coordinates (¢,7,0,¢) (|17]), and
its line element is given for ¢ = 1 by:

2GM AGMarsin® @ 2
ds? = — (1 26k T) a2 — AGMarsn0 4 4 K
p p
2G Mra?sin® 0 (2:3.142)

+ p*do? + (r2 +a® + > ) sin? fd¢>
P

where

A =7r?—2GMr + d?,

p® =1%+a®cos’ 0.

M is the mass of the central rotating object, often a black hole, influencing the
surrounding spacetime and a is the specific angular momentum of the rotating object.
The important term to note here is —Wdtdqﬁ, which represents the spacetime
dragging effect due to the rotation of the object, typically a black hole. This charac-
teristic can be interpreted as a manifestation of Ernst Mach’s idea of the relativity of
motion, where spacetime itself seems to be influenced by the presence of moving matter.

The relevance of the Kerr solution was further underscored by the discovery of pul-
sars in 1967, initially understood as neutron stars rotating at incredibly high speeds,
sometimes reaching a thousand rotations per second. Although the Kerr metric is pri-
marily applied to the black hole model, its implications for understanding other compact
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astrophysical objects, such as neutron stars, are also significant.

Renowned astrophysicist Subrahmanyan Chandrasekhar praised the Kerr solution,
considering it a major advance in applied mathematical research in theoretical physics

(115]).

What is important to emphasize through this Kerr approach is the possibility of
exploring other representation properties, such as introducing, for example, a drdt
term into the Schwarzschild exterior metric, whose implications will be studied in the
chapter 6.

2.4 The Works of Andrei Sakharov & Jean-Marie Souriau

The Janus cosmological model compiles Albert Einstein’s theory of general relativity,
the work of Andrei Sakharov in particle physics and cosmology, as well as the work
of Jean-Marie Souriau in symplectic geometry. According to the theory of dynamical
groups, it explains how time inversion implies an inversion of energy and therefore mass.

Indeed, the baryonic asymmetry of the universe is considered one of the most sig-
nificant problems in current physics. More specifically, it refers to the observation that
there is a net quantity of baryons (particles made up of three quarks, such as protons
and neutrons) in the universe, but almost no antibaryons (particles composed of three
antiquarks). The universe should have been created with an equal amount of baryonic
matter and antibaryonic antimatter since the Big Bang, which would have led to their
mutual annihilation, their mass transforming into photons. But where did this primor-
dial antimatter go?

In the 1960s, scientists discovered that the rate of matter production (from the
combination of primordial quarks) occurs slightly faster than the rate of antimatter
production (from the combination of antiquarks), a phenomenon known as “CP wiola-
tion” ([19]). This was paradoxical because such combination processes were previously
thought to be symmetrical. However, because of this CP wiolation, more matter was
synthesized in the primordial universe and prevailed over antimatter.

The Russian physicist Andrei Sakharov was the first, starting in 1967, to restore
a global symmetry, considering that the universe was not composed of a single entity
but of two twin universes emanating from the same Big Bang singularity, having two
opposing time arrows from the moment ¢ = 0. The initial singularity ® not only reverses
time (7-symmetry) but also parity (P-symmetry, also called “enantiomorphy”) as well
as charge conjugation (C-symmetry, which transforms a particle into its antiparticle,
and vice versa), inducing complete CPT-symmetry ([63],[64],[65]). The CP-symmetry
violation is also reversed in the twin universe, meaning that antimatter prevailed over
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matter. It should be noted that Sakharov focused on describing CPT-symmetry only
within the context of particle physics, thus without involving gravitation in his model,
so that the twin universes never interact except at the moment of their birth as on the
Figure 2.13:

arrows of time

.,
",

LY
space (reduced to one dimension)

Figure 2.13: Sakharov Cosmological Model

2.5 Bimetric Approach Introduced by Hyperbolic Rie-
mannian Geometry

Hyperbolic Riemannian geometry plays a crucial role in the Janus cosmological model.
This branch of geometry studies curved spaces with a constant negative curvature. This
geometry allows for the conceptualization of spaces with both positive and negative
curvatures. However, it is important to note that currently, there is no bimetric or
multimetric mathematical theory introduced in hyperbolic Riemannian geometry on
which a bimetric cosmological model can be based. Indeed, current theoretical models
remain heuristic. For example, two approaches were attempted in 2002 and 2008 by
Thibauld Damour ([20]) and Sabine Hossenfelder ([32]), respectively. One was based on
the introduction of heavy and light gravitons in a bimetric field equation system, and
the other was more or less similar to our model. Indeed, Damour and Kogan attempt
to construct a “two-branes” theory, involving a spectrum of massive gravitons, but this
40-page paper ends in a fishtail. In passing, they show that such bigravity must obey
a system of two coupled field equations:

1

2M? (RW(gL) — 5gﬁ,,R(gL)> + ALgﬁV — tﬁy + T,fy (2.5.1)
1

2Mp, <Ruu(gR) — §gfyR(9R)) + Argy, =th, + T (2.5.2)

Then, Sabine Hossenfelder proposes a refined model addressing the concept of neg-
ative mass in the universe. However, in 1957, Hermann Bondi attempted to introduce
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these masses into Albert Einstein’s model. Nevertheless, the so-called runaway phe-
nomenon reveals physical contradictions that the model violates, such as fundamental
principles of physics like the principle of action-reaction and equivalence (|10]). Hossen-
felder goes further to formulate a pair of new coupled field equations:

1 h
@R, — §gyk(g)R = Tho — Z\/gagaz (2.5.3)
1
OBy — Shy R = Ty =W %aga;ﬂw (2.5.4)

Next, as she could not resolve the inconsistency with physical principles and believed
it to be inextricably linked to "bimetric gravity”, she gave up.

The common point between these two approaches is that they are purely theoretical
and have not provided any results validated by observations. The only credit that can
be attributed to our cosmological model, compared to the previous two, is that it has
many anchoring points with observation and several physical predictions that we’ll see
on the Section 3.2

Hyperbolic Riemannian geometry is a branch of Riemannian geometry that studies
curved spaces with a constant negative curvature, mathematically corresponding to a
hyperbolic shape often described as being "saddle-shaped”. More precisely, the constant
negative curvature of hyperbolic space can be described as the asymptotic behavior of
the hyperbola in both directions: the branches of the hyperbola diverge infinitely with-
out ever converging. This characteristic is an important property of hyperbolic space
and can be used to distinguish it from Euclidean geometry and spherical Riemannian
geometry.

For example, on the Figure 2.14, the red lines drawing the triangles are the geodesics
of the surface. Put simply, a geodesic is the shortest path between two points in space.
Imagine you’re in a flat Euclidean space, like on a large sheet of paper; here, this
path is just a straight line. But on curved surfaces, whether they are positively curved
(Spherical geometry) or negatively curved (Hyperbolic geometry like a horse’s saddle),
a geodesic can be drawn using a rope or an elastic stretched tight between two points
on that surface, representing the shortest path. Thus, contrary to Euclidean geometry
where the sum of the angles of a triangle equals 180 degrees, this sum exceeds 180
degrees in spherical (Riemannian) geometry and is less than 180 degrees in hyperbolic
geometry (also a type of Riemannian geometry).
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Figure 2.14: Types of Spatial Curvature

It’s important to note that a "flat” Euclidean space'?, is not necessarily a flat plane.

Take the earlier example of the sheet: even if it’s bent several times, like corrugated
iron, its curvature remains zero everywhere. This means that the geodesic traced on its
surface don’t change, because the sheet isn’t stretching. The same goes for closed Eu-
clidean surfaces like a cylinder or a cone: contrary to what one might think, they don’t
have any curvature. According to Euclidean geometry, although they appear curved,
they can be considered "flat” because their surface can be unfolded into a plane without
stretching.

The concept of the Janus Cosmological Model, which will be developed on the next
chapter, is to associate it with a "twin geometry” defined by a relationship between
spaces with positive curvature and spaces with negative curvature, according to a system
of two coupled bimetric field equations.

19 A space with zero curvature.
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Jean-Pierre Petit’s Janus Cosmological Model

3.1 Description

The Janus Cosmological Model (JCM) proposes a revolutionary vision of the universe,
characterized by a Riemannian manifold with two distinct metrics. These metrics man-
age positive and negative masses in a unique way, offering a coherent interpretation
within the framework of general relativity, confirmed by observations, while avoiding
traditional paradoxes.

Based on Andrei Sakharov’s cosmological model of non-interacting twin bimetric
universes, a new model has been developed as a unique universe consisting of a single
Riemannian manifold with two metrics, namely a four-dimensional hypersurface with
two layers folded onto each other in CPT-Symmetry but this time interacting through
gravitational effect.

opposite arrows of time

singularity

-

conjugated 1D-folds

Figure 3.1 : Didactic 2D image of Jean-Pierre Petit’s Janus Cosmological Model

51



CHAPTER 3. JANUS COSMOLOGICAL MODEL

The first layer is gridded with a certain unit of length providing a metric traversed
by matter of positive energy and mass between two points of this spacetime at a speed
¢, limited by the theory of special relativity (Section 2.2.2). And its counterpart, folded
on top but gridded according to a unit of length 100 times shorter and a speed 10 times
higher for matter of negative energy and mass (the photons evolving in the same pro-
portions), resulting in a traversal time 1000 times faster. This model thus provides two
families of geodesics traversing spacetime in two different ways and at different speeds
making interstellar travel possible, and explaining several physical phenomena such as
the missing primordial antimatter as well as the confinement of galaxies ([49],[53],[52]).

It also demonstrates that negative energy states are compatible with quantum me-
chanics.

This model is built on two coupled field equations that is an extension of Einstein’s
field equation, offering a credible alternative to the presence of dark energy (repulsive
power) and dark matter (flattening of galactic rotation curves) in the cosmos while
successfully integrating negative masses into General Relativity.

It’s based on the derivation of equations from a concept called the " Lagrangian". In
physics, we often use principles to explain how objects or particles move and interact
with each other. In our case, we employ principles of variation, which are mathematical
formulas that describe how a physical system evolves over time by minimizing a specific
quantity called "action". This concept of variation must be "covariant", meaning it
remains the same regardless of the chosen inertial reference frame. This implies that it
applies to all observers, regardless of their velocity.

The logical derivation from these principles should lead us to equations that describe
the motions and interactions of a system of particles in a way that makes them valid for
all observers, regardless of their relative motion. The "Action" is defined as the integral
of the "Lagrangian" over a certain period of time, enabling us to describe the kinetics
and dynamics of a physical system. The "Lagrangian" is a function computed from the
kinetic and potential energy of the system, as well as other factors that may influence its
behavior. By using the principle of least action, we seek to find the system’s trajectory
that minimizes "action", meaning the path for which the "action’s"
possible. The equations of motion are obtained by differentiating this minimal action
trajectory with respect to time.

value is as low as

3.2 Implications

Cosmology is in crisis. Indeed, the first example is the rate of expansion of the Universe,
which, like a gigantic balloon, has been inflating for 13.8 billion years. When astro-
physicists measured the current rate of this expansion with their telescopes, known as
the Hubble constant (or Hy), they found a value incompatible with that predicted by
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the standard model of cosmology (the ACDM model), the theory that best describes
the history of the Universe for the time being, from its origin (the Big Bang) and the
first atoms to today, including the first stars and galaxies.

The Hubble constant (Hy) is a key parameter in cosmology that measures the rate
of expansion of the Universe. It indicates how fast galaxies are moving away from
each other as a function of their distance. However, recently, two main methods of
measurement have yielded significantly different results:

e On the one hand, local measurements using direct observation of galaxies and the
cosmic distance scale based on standard candles such as Cepheids and Type Ta
supernovae give a value of Hy of 73 km/s/Mpc'. This measurement comes from
the Shoes collaboration led by American Adam Riess.

e On the other hand, data from the Cosmic Microwave Background?, analyzed
within the framework of the standard model of cosmology, suggest a lower value,
of 67.4 kilometers per second per megaparsec (km/s/Mpc). This method relies
on data from the Planck satellite.

This divergence, if not attributable to measurement errors, necessitates a reevalua-
tion of some fundamental aspects of the standard model, such as the role of dark energy
in the acceleration of cosmic expansion. The Janus Cosmological Model attributes this
anti-gravitational effect to negative masses and specifies its nature, a subject that we
will study into later in the dedicated section 3.3.

Another example is the James Webb Space Telescope (JWST), with its advanced
infrared observation capabilities, which is designed to observe the Universe at very early
stages of its evolution, including the formation of the first galaxies. Recent observations
from the JWST reveal objects or behaviors that do not match the predictions of the
standard model, leading to a complete revision of its foundations.

Indeed, according to the standard model of cosmology, the universe experienced a
dark period after the Big Bang, followed by the formation of the first stars and proto-
galaxies a few hundred million years later. These initial structures evolved into large
galaxies over the first billion years, a process driven by the gravity of dark matter.
Galaxies continued to develop and cluster over billions of years, forming the various
types observed today.

! One megaparsec is approximately equivalent to 3.26 million light-years. For every megaparsec of
distance, the expansion of the Universe increases the speed of separation of galaxies by 73 kilometers
per second.

2The Cosmic Microwave Background (CMB) is the electromagnetic radiation emitted about 380,000
years after the Big Bang, when the universe had cooled enough for electrons and protons to combine
into atoms.
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Dark matter and dark energy are thought to play crucial roles in this process, in-
fluencing the formation of structures and the expansion of the universe, respectively.

Moreover, a recent study published in Nature Astronomy |12] discusses the discovery
by Mike Boylan-Kolchin, associate professor of astronomy at the University of Texas
at Austin, of several galaxies forming earlier than expected at high redshifts (between
500 and 700 million years after the Big Bang), which are much more massive than ours
(10 billion solar masses).

For example, Abell 2744 Y1 is a galaxy cluster located in the Sculptor constellation
at a distance of approximately 13.2 billion light-years away, and thus, it appears to us
as it was when the universe was only 650 million years old (Figure 3.2).

Abell 2744 GLASS
JWST/NIRCam

Figure 3.2: James Webb Space Telescope Image - Abell 2744 Y1

This observation from the James Webb Space Telescope once again confirms one of
the predictions of the Janus Cosmological Model.

The Janus Cosmological Model therefore sheds new light on key cosmological ques-
tions, the answers to which are confirmed by numerous observations and predictions,
of which here is a non-exhaustive list:

e Explanation of the confinement of galaxies by lacunar spaces occupied by negative
masses contributing to their stability.
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e Explanation of the shape of galaxy rotation curves (flattening)

e This model explains the greater-than-expected gravitational acceleration of stars
orbiting at the outskirts of galaxies due to the presence of negative masses.

e Explanation for the high velocity of galaxies within clusters due to the anti-
gravitational contribution of negative masses.

e [t provides a mathematically detailed description of the behavior of galaxies,
relying on a common approach to Vlasov and Poisson equations. It predicts
that the velocities of stars within a galaxy organize themselves into an ellipsoid
oriented toward the galactic center, an assumption confirmed by the measurement
of residual velocities of stars near the solar system (Chapter 4).

e It explains the gravitational lensing effects around galaxies as on 3.3.

— e/
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Ot drcr

Figure 3.3: Gravitational lensing effects

e Explanation of the void-like structure of the universe occupied by clusters of
negative masses in the form of interconnected soap bubbles as on 3.4.
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Cluster’s location

Joint soap bubbles

Big void

Cluster of galaxies

Figure 3.4: Lacunar structure

This structure was also established in 2018 by Tsvi Piran in his article [61], where
he highlights the distribution of galaxies in what he refers to as "walls” due
to the anti-gravitational compression of underdense regions of negative masses
concentrated within the dark matter of empty spaces. Observations show that
these empty spaces occupy a significant portion of the Universe’s volume. The
correlation between voids in the distribution of galaxies and regions of low dark
matter density clearly demonstrates the gravitational origin of these voids. The
primordial underdense regions, known as "negative cosmological voids", act as
gravitational negative masses and serve as the seeds for the observed voids. The
centers of these underdense regions are effective gravitational masses that repel
matter, aligning it along the walls between the centers. Voids are centered around
these masses and are surrounded by walls of galaxies. Eventually, the walls crack,
causing the void spaces to merge with other voids, creating a larger network of
voids that confines galaxies within.

e Prediction and confirmation of the early formation of all galaxies recently observed
by the James Webb Space Telescope ([26]). Indeed, the model suggests that
all galaxies formed together during the first 100 million years of the universe’s
history (primordial). This formation occurred when positive mass was violently
compressed between multiple clusters of negative masses, creating high pressure.
The strong contraction of matter and gases due to the anti-gravitational effect of
negative masses induced significant heating, leading to rapid cooling facilitated
by a sheet-like structure. This cooling time allowed the attainment of a sufficient
temperature to initiate thermonuclear fusion reactions, thus enabling the first
stars to be born and gather to form the galaxies we know today.

e Explanation of distant galaxies with a high redshift (> 7) appearing as dwarfs
(reduced luminosity). Indeed, clusters of negative masses (as in the region of the
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Dipole Repeller that we will study in the Section 3.3) create a negative gravita-
tional lensing effect on their photons, which has the effect of attenuating their
brightness.

e Local relativistic verifications confirmed, such as the advance of Mercury’s perihe-
lion or the deflection of light rays by the Sun. Indeed, since both types of masses
repel each other and considering that the density of negative mass is nearly neg-
ligible in the vicinity of the Sun, the first equation of the system corresponds to
Einstein’s field equation (see the Section 3.3.4).

*® Mercupy

Figure 3.5: Space-Time Warping Induced by the Sun’s Mass

e Exploiting the asymmetry between the two populations of positive and nega-
tive masses has led to consistency with the data from observations of type ITa
supernovae. The observation of type Ia supernovae has been a crucial tool for de-
termining the distances of celestial objects and studying the universe’s expansion.
Type Ia supernovae are supernova explosions that occur in binary stellar systems
where a star known as a white dwarf absorbs matter from a companion star until
it reaches a critical mass, causing an explosion. This asymmetry could be caused
by processes such as the rotation or magnetic field of the companion star, which
transfers matter to the white dwarf. If the asymmetry exists, it could result in
a difference in brightness between type la supernovae, which could explain the
observations.

e Explanation of the nature of the Great Repeller discovered in January 2017 (see
the Section 3.3), where it was shown to exist in an apparently empty region of
the universe, opposite to that of the Shapley Attractor, which appeared to repel
all matter.
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Figure 3.6: The great repeller
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e The model highlights a sustainable galactic spiral structure model ensured by
dynamic friction that continuously transfers momentum to the less dense envi-
ronment of negative mass, allowing the spiral arms to persistently and stably
revolve around the galaxy.

As depicted on next figures 3.7 and 3.8, when the arms traverse regions of high
density (positive masses), they slow down and lose energy, whereas when they
pass through low-density regions, they accelerate and gain energy. This creates
density waves that propagate through the galaxy, transferring momentum to the
negative mass environment.

In the context of the Standard Model, the rotation and spiral arms of galaxies
are primarily explained by gravity and differential rotation, where density waves
form and act as compression zones. These allow stars and interstellar gas orbiting
around the galaxy’s center to pass through them. These compression zones can
trigger the formation of stars by compressing interstellar gas, contributing to the
appearance of bright spiral arms.

In the Janus model, spiral galaxies also form through exchange with their external
environment, consisting of negative masses that confine them. It is important to
note that for these waves to imprint a lasting spiral rotation on a galaxy, they
must interact with the waves of another medium.

Currently, scientists study the spiral structures of galaxies in the same way they
would analyze sea wave motion, without considering their interactions with the
wind. Indeed, if we set aside various other factors like water depth, seabed to-
pography, the strength and direction of the wind, etc., when wind blows over
the surface of the water, it generates ripples on the surface, thus creating wave
propagation through the water. These ripples are essentially surface waves, also
known as gravity waves. They propagate on the water’s surface due to the gravity
and surface tension of the liquid. When the wind blows over the water, it trans-
fers kinetic energy to the water’s surface, thereby creating surface waves. This
transfer of energy implies an exchange of waves. Surface waves result from this
interaction between the wind and the water’s surface.

Another example to illustrate would be the spiral of cream in a coffee, created
by stirring with a spoon. This spiral is induced by its interaction with the cup.
Without the cup, there would be no spiral.
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Figure 3.7: Barred spiral from a numerical simulation (1992: 20,000 points)

Momentum of the positive population

Figure 3.8: Evolution of the kinetic moment (1992: 20,000 points)

e Explanation for the lack of observation of cosmic antimatter, as it emits photons
with negative energy.
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e Explanation of the nature of the invisible components of the universe: antiprotons,
antineutrons, antielectrons, antihydrogen, and antihelium with negative mass.
These elements make up the primordial antimatter, eluding observation as they
emit photons with negative energy.

e Conjecture confirmed recently on September 2023 [5]: C-symmetric anti-
matter (charge symmetry), developed in the laboratory and emitting photons of
positive energy, is gravitationally pushed downwards just like ordinary matter.

e The model offers its own interpretation of the Cosmic Microwave Background
fluctuations by attributing them to the response of ordinary matter with positive
mass to density fluctuations in adjacent universe cells populated by a distribution
of negative mass matter. This situation is linked to the gravitational instability
that manifests within these cells. The analysis of these fluctuations serves as a
means to evaluate the ratio between the scale factors of the two types of matter.

It is observed that the ratio % is of the order of 100. Consequently, it can

be deduced that the ratio EE;; is of the order of 10 ([52]). This implies that the
overall effect would be to reduce the required time for interstellar travel by a factor
of a thousand for objects that succeed in reversing their mass, thereby enabling
them to move along the geodesics described by the metric h,, of the second field
equation 3.3.36, as we will study in the following section.

Figure 3.9: Cosmic Microwave Background

e Gravitational redshift of 3 deduced from the first two images of supermassive
objects located at the centers of galaxies M87 and the Milky Way (See the study
conducted in the section 8).

e There is currently no answer to the question: “What was it before the Big Bang?”
According to the Janus Cosmological Model, a topological structure of the uni-
verse, “interacting with its anti-chronal counterpart”, eliminates this questioning
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by invalidating the meaning of the adverb “before”. Indeed, as we’ll see in chapter
7, at the moment of the Big Bang, the arrow of time reverses.

3.3 The Dipole Repeller

3.3.1 Introduction

In 2017, Yehudi Hoffman, B. Tully, H. Courtois, and D. Pomaréde published the first
highly detailed map of the universe [31]. This map was not only based on the posi-
tions of galaxies but also incorporated their velocity field by subtracting the influence
of the Hubble expansion from the raw measurements of their redshift. The results were
incredibly impressive and are considered among the most significant observational dis-
coveries in cosmology today, comparable in importance to Edwin Hubble’s discovery a
century ago. Prior to this study, it was known that certain galaxies exhibited convergent
motions towards a region known as the Great Attractor. The 2017 analysis revealed
the influence of another, larger structure located beyond the Great Attractor, named
the Shapley Attractor. However, the most remarkable finding was the identification
of a region nearly opposite to these two formations, where no galaxies were detected.
Instead, there was a significant void surrounded by neighboring galaxies exhibiting a
motion away from this region, forming a "flight” pattern centered on this void. Initially
called the Dipole Repeller, it was later named the Dipole Attractor when it was under-
stood to be connected to the attractive formations. Understanding this phenomenon,
which cannot be attributed to measurement artifacts, undoubtedly requires significant
progress in our understanding of cosmic dynamics.

3.3.2 Some Attempts at Interpretation

Four years after the initial discovery, there have been few attempts to model the phe-
nomenon of the dipole repeller. In his recent article [42], Neiser does not focus on
this question but instead proposes hypotheses about the nature of the Big Bang, the
quantum vacuum, and the origin of the universe. Neiser speculates that antimatter
could have a repulsive gravitational effect, leading to the formation of neutrino stars
and antineutrino stars that repel each other. Similar repulsive aspects of primordial
antimatter are mentioned by Benoit-Lévy et al. in 2012 (|7]), but without further justi-
fication. Heald in his article [29] mentions the situation of Laniakea, which is pushed by
the dipole repeller and pulled by the Shapley Attractor. Again, the idea of a repulsion
between matter and antimatter is suggested as a possible explanation for the large-scale
structure of the universe and the organization of voids. However, no concrete model
is given for the center object in the great void, and the lack of emitted light remains
unexplained. In 2018, Hoffman et al. used numerical simulations to reconstruct a dark
matter distribution consistent with observational data [30]. They suggest the existence
of a bias (or discrepancy) in the dark matter distribution compared to the distribution
of galaxy luminosity. Observations have revealed that the expansion of the universe

62



CHAPTER 3. JANUS COSMOLOGICAL MODEL

is accelerating, indicating the presence of a component with negative pressure (|47],
[62], [67]). One model proposed to explain this phenomenon suggests the existence of
negative masses that could contribute to these antigravitational effects, combining the
repulsive influences of dark matter and dark energy on positive mass components. This
hypothesis is at the center of the works corresponding to the references [51| [53| [54]
[57] [58] [55] [56].

3.3.3 Interpretation through Dark Matter Voids

Let’s study the possibility that a void in dark matter could produce the observed repul-
sive effect. We can begin by considering a spherical void within a uniform distribution
of dark matter and use the Poisson equation to analyze this system:

d®U 24V
— 4+ —— = 47Gpgm 3.3.1
dr2 + r dr Tpd ( )

This equation is linear and describes the gravitational potential as a function of
density. By superimposing two density distributions p; and po, the resulting gravita-
tional potential is the sum of the potentials associated with these two distributions:
U =0, + U,

Considering a uniform density distribution p
the solution of the Poisson equation 3.3.1:

unif
dm »

we obtain a potential ¥y, which is

47TG,03nif7"2 87er3“if
= — & -y 3.3.2
3 5T (3.3.2)

unif

Now, by introducing a volume with an opposite density equal to —pih', we create a
potential Wy, which is the solution of the following Poisson equation:

\Ifl et 51 =

d®0, 2dY,

S = A Gpunit 3.3.3
dr2 r dr T Pdm ( )

This solution is: it o it
_AnGpgy T C d= 87Gpgm - (3.3.4)
3

Thus, we obtain the same gravitational field but with opposite sign. It’s therefore
repulsive and proportional to the distance from the center of the sphere.

Next, by calculating the gravitational potentials associated with these two distribu-
tions, we can observe that the resulting gravitational potential is zero inside the void. In
other words, the gravitational force exerted by the uniform distribution of dark matter
is exactly counterbalanced by the gravitational force exerted by the opposite density
creating the void:

U, =

However, regardless of the chosen position as the origin of coordinates, the gravi-
tational field remains nonzero inside the void. This means that the gravitational force
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is not perfectly balanced, which seems contradictory to the idea of a void creating a
repulsive gravitational field.

To solve this paradox, the Poisson equation must be considered as the linearized
version of the Einstein equation in a stationary situation, which defines the gravitational
potential in terms of a perturbation of the Lorentz metric:

G = Nuw + EYpw (336)

The classical calculation gives for proper-density py (|1]):
3
€ Z“f’oouu = —X/fo (3.3.7)
i=0

NB: In the context of the weak field limit as studied in the Section the equation
[3.3.7] relates the second spatial derivatives of the time component 7o of the metric
tensor to gravitational sources, represented by the local mass-energy density po. It
helps us understand how the curvature of space-time responds to the distribution of
mass-energy, while maintaining a precise relationship between these two aspects.

Thus, the gravitational potential is defined as 2.3.112] by:
o2
U= ——&%00 (3.38)
2
Then, [3.3.7] can be identified with the Poisson equation. However, this approach
cannot be applied to an infinite uniform distribution of dark matter. The conclusion is
that it is simply impossible to define a gravitational potential within a uniform matter
distribution. Consequently, the problem of the existence of large voids in the large-scale
structure of the universe remains unresolved, as gravitational instability tends to lead
to the formation of clusters. not voids, and there is no clear framework for the formation
of such voids.

3.3.4: Petit’s Interpretation through
his Janus Cosmological Model
Let’s now consider the interaction between two entities: ordinary matter with positive

mass interacting with negative mass through gravitational effects. This model involv-
ing negative mass takes into account the influence of both dark matter and dark energy.

We can describe this system of two entities with respective metrics g, and h,,,. Let
G and H be the corresponding Ricci scalars. Petit considers the following two-layers

action®t
i | o ; K ’
4= /éf (ﬁc +S(g) + 'S(Im;)) Vigld'a + [; (WH + Sy + S(;}Jr)) V|h|d'z

(3.3.9)
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The terms S, and S,y will yield the source terms related to the populations of the
two entities, while the terms S, 4y and S(, ) will generate the interaction tensors. I'9)
and I'™ are the gravitational constants of Einstein for each entity. g and h are the
determinants of the metrics g,, and hy,,. For k = £1, we apply the principle of least
action. The Lagrangian derivation of this action gives us:

0=0A
- / 0 (2F(9)G+S(9) +S(hg)) varl d4$+/5 <2F(h)H+S(h) + S, h)) vald d4

:/5 1 0G n G (5\/|g| n 1 (5\/|gS(g) i 1 (5(\/|g|S(h7g)) 59’”\/@&1’
s 209 \og gl 09 ) gl 09 lgl g™

ot (e ) -

S o | T o ] o

(3.3.10)
For any variation dg"” and any variation dh*, we obtain locally:

) G_alal\ , 1 o/alSw) 1 3IglS0a) o (551y)
2T 69/“/ Vgl 09 Vigl 09" Vigl 09

K 0H n H 6+/|h| n 1 d(\/]h|Swy) n 1 0(+/|hS.n) ~0 (3.3.12)
200 \ 6hrv /]| 0h# Nl VIh o dhe -
Let us introduce the following tensors:
2 0(\/191Sq) 08
(9.9) — _ (9) (9)
T99 = \/m 5g = 25 " + 9,wS(g) (3.3.13)
2 6(\/IMSw) 05k
(hh) _ (h) ()
Y T T R (3.3.14)
T — 2 919150) (3.3.15)
' ViRl g
ran _ __2 SW/IhSen) (3.3.16)

T gl ok

Indeed, in general relativity, the covariant derivative is a way to generalize the notion
of the partial derivative to curved spaces. Unlike an ordinary partial derivative, the
covariant derivative accounts for the curvature of space-time.

entirety of spacetime as the domain of integration, integrating the contributions from every point to the
action. The term d*z represents an infinitesimal element of hypervolume in this bimetric spacetime,
serving to “measure” each segment during integration. Hence, it is a multiple volume integral carried
out over the four dimensions of spacetime, accumulating the contributions to the total action from
each four-dimensional volume segment, corresponding to each metric.
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Then, for a tensor A”_, its covariant derivative along an indice p is given by the

vo?

expression:

NB :

vﬂAlp/a = 8ﬂAtp/a + FZ)\AI/}J - F})\LVA?\O' - Ff\wAllj)\ (3317)

So, we can deduce both expressions :
Vubll, = 9,610, + 10,615, — I, 0%, — I'p,00%, (3.3.18)
V,0I%, = 8,010, + 0,61, —Ip,60%, — ) 6" (3.3.19)

e 3.3.19 is obtained from 3.3.18 by simply swapping p and v

e The term 0, A%, is the ordinary partial derivative of the tensor. If spacetime were

flat (as in Newtonian physics), this would be enough to describe the variation of
the tensor.

The terms with the Christoffel symbols I',, T»,, and I}, represent the correction
due to the connection of space-time, which takes into account how space-time is
curved. Indeed, in curved space, the connection (represented by the Christoffel
symbols T') introduces a correction. This correction is necessary because the bases
of the tangent space (the space in which the tensor lives) change from one point
in spacetime to another. So, FZAAﬁJ is the term that corrects for the change in
the component A as we move in the y direction for the upper indice p. I‘;\“,Af\a
and F/’)GAZ’Z/\ are terms that subtract the contribution due to the change in the

lower indices v and 0. These terms ensure that the covariant derivative respects
the tensor transformation rules.

In summary, the covariant derivative V, of a tensor is a combination of its or-
dinary partial derivative and terms that compensate for changes in spacetime
geometry. It is constructed such that the derivative of the tensor is itself a tensor,
which is not the case for the ordinary partial derivative.

Then, the Riemann tensor is related to the Christoffel symbols by the equation:

Rpa,uu - 8MF50 - aI/FZU + FZ)\I%J - Fg)\r;/)a (3320)

NB: The Riemann tensor R”_, is a mathematical quantity in general relativity

opv

that describes the intrinsic curvature of spacetime. It is defined by the difference be-
tween the partial derivatives of the Christoffel symbols and the sum of the products
of the Christoffel symbols themselves. The term 0,1, is the partial derivative of the
Christoffel symbol I'Y  with respect to the coordinate x*. This term measures how the
Christoffel symbol varies when moving in the p direction. The term 9,1 is similar
to the first term but with the partial derivative taken in a different direction, x¥. The
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terms 7T} and T, T, describe the product of two Christoffel symbols that repre-
sents the interaction between two spacetime connections. It measures how curvature in
one direction influences curvature in another direction.

Then, we get:
SR?,,, = 0,010, — 8,000, +0T% T, + 10,615, — 610,17, =060, (3.3.21)
Thus, we obtain :
SR?,,, = V.60, — V0T, (3.3.22)

By contracting the indices p and o in the previous relation using the Einstein sum-
mation convention, which states that when an indice is repeated, there is an implicit
summation over that indice, we can express the variation of the Ricci curvature tensor
which meets the Palatini identity ([77],[45]):

0Ry, = 0R’,,, =V, (I7,) = V,(6,) (3.3.23)

NB : In general relativity, the geometry of spacetime is described by a quantity
called the metric tensor, denoted by g,,. This tensor contains all the information
about distances and angles in spacetime.

The Ricci scalar, denoted by R, is a measure of the curvature of spacetime at a
point. It is computed by summing (or contracting) the components of the Ricci tensor
R,, with the metric tensor ¢g°”. Mathematically, it is as if you were multiplying the
matrices of the Ricci tensor and the metric tensor and then adding up the terms along
the diagonal.

Plus, we must have the covariant derivative of the metric tensor equal to zero®. In
other words, as you move through spacetime, the way you measure distances and angles
does not change. This is a fundamental property of spacetime in general relativity that
says the local geometry does not change as you move, regardless of the overall curvature.

In summary, the Ricci scalar R gives us an idea of how much spacetime is curved
at a point, and the fact that V,g"” = 0 ensures that the shape of spacetime remains
consistent as we move, regardless of the global curvature®.

4

Next, we can deduce :
OR = Ry,09°" 4+ ¢°"0 Ry
= Ry, 09" + g°" (V,(0T0,) — V., (3T%,))

= Rou0g™ + VY, (¢°"01%,) — g7V, 01%, (3.3.24)
= Rpu0g°" + V(g7 6T, — 76T )
= R,,0g°" + V,B”

4v 73 2
og" =0

This consistency is ensured by the metric’s compatibility with the Levi-Civita connection, which
guarantees that geometric concepts such as lengths and angles remain constant when they are trans-
ported through spacetime.
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NB : For the calculation above, we must consider two rules :

e The properties of the covariant derivative and the Leibniz rule (the product rule
of differentiation). The Leibniz rule for the covariant derivative is similar to that
of the ordinary derivative and is written as:

V,(AB) = (V,A)B + A(V,B)
where A and B can be scalar, vector, or tensor fields.

e As noted before, repeated indices are referred to as silent or dummy indices
according to the Einstein summation convention. Indeed, it is useful to recall that
when an indice of a variable appears twice in a term, once in an upper position
and once in a lower position, it implies summation over all possible values that
the indice can take. For example, A*B, implies ZM AFB,. Let’s consider the
Christoffel symbols I'f/, and I'/,. In these expressions, the indices y and p are
examples of dummy indices according to the Einstein summation convention. This
means that the expression I'}/, where the sum is taken over all possible values of
14, is identical to I'/ |, where the sum is taken over all possible values of p. Thus,

we can apply the summation indices (p,v) — (u, p) in the last term.

By calculating in two different ways, we have:

Vu(VI9I6B") = V(1) B* + V[gIVu(6B*) = \/[gV,6B" +0 = /[g] V.0 B"
(3.3.25)
Vu(VIGIB) = 0,(v/Igl0B") + T, /TGI8 B” = 0,(\/gI6B) + 0 = 8,(\/ g1 B*)
(3.3.26)
NB : Similarly, the derivative of the determinant of the metric tensor, represented
as 1/|gl|, is also zero when taken covariantly®. This latter property simplifies the ex-
pression of volume integrals and is fundamental to the application of the divergence
theorem in curved spacetime.

Then ,we can deduce:

\/EVMSB# = au(\/m(SB#) (3.3.27)

Let’s now consider the contribution of \/HVMcSB“ in the action. Let n* be a unit
vector normal to 08, € = n*n,,y" representing coordinates adapted to the boundary
0&, and hgy, representing the metric induced by g, on the boundary. We have |e| = 1,
and +/|h[d% is an (n — 1)-volume form on the boundary with i = det(hy). By the
Stokes’ theorem, we have:

/\/\g\VuéB“\/_—gd‘lx:/@(\/\g\éB“)d% (3.3.29)
& &
:/ ed B,/ |h|d®y (3.3.29)
08

V,.\/]gl =0
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We will assume that the metric does not vary at the boundary (or that there is no
boundary). In this case, the term V,0B*\/—g does not contribute to the action, so we

have:
0R V,B?f N

(5gﬂy = R:U'V 5.9}“/ ~ 1%

_l_

(3.3.30)

However, from the corollary with a = %, we have:

1 1
5\/—g = 5\/—_99“”59;w =51 /=G, 09" (3.3.31)

So, we can deduce:
R/—g 1
—__g 69“” = —égwR (3332)

NB : For the calculation above, we need to explain two things:

e The variation of the determinant of the metric tensor, denoted as dg, is related
to the variation of the metric tensor itself, dg,,, through the relationship 6g =
99""0g,.,, where g is the determinant of the metric tensor and ¢g"” is its inverse.
This relationship arises from the mathematical property of determinants, where
the derivative of a determinant can be expressed as the determinant multiplied
by the trace of the product of the inverse of the matrix and the derivative of
the matrix. In the case of a small variation, the variation of the square root
of the negative determinant of the metric tensor, d\/—g, is given by 0,/—g =
% —gg"g,,. This formula is pivotal in deriving the Einstein field equations
from the Einstein-Hilbert action, as it allows for the integration of the action over
the four-dimensional spacetime manifold.

e In our study, we utilize Stokes’ theorem to simplify a crucial calculation. This
theorem establishes an interesting relationship between the integral of a derivative
of a vector field over a three-dimensional region and the integral of the same vector
field along the boundary of that region.

Let’s consider a simple example: imagine a closed surface in space (like the surface
of a sphere). If we want to calculate something within this surface (e.g., the sum
of values of a field), Stokes’ theorem allows us to do so by simply looking at what
happens on the surface itself.

The equation (3.3.28) we presented in our calculation follows this idea. It tells
us that the integral of the derivative of a field (V,0B") over a four-dimensional
region (&) can be equivalent to the integral of the divergence of another field
(/1916 B") over the same region (&). This equivalence is achieved through the
metric and a four-dimensional volume element (d*z).

Next, equation (3.3.29) further simplifies the expression by bringing it to the
boundary of the region (0&’). It shows us that this equivalence can be expressed as
an integral along the boundary (6&), using normal vectors (n,) to that boundary
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and the induced metric on it (\/|k|d*y). In other words, this equation allows
us to understand what happens on the surface of our region without having to
calculate what happens inside.

In summary, Stokes’ theorem enables us to streamline our calculations by showing
us how phenomena within a region can be understood by simply examining what
happens on the boundary of that region. This mathematical trick is essential for
solving those complex problems.

We obtain then from equations [3.3.15|and 3.3.16}

|h {h q) — m —2 (5( V |Q|S(hy}) _ -2 6( \/ |g|5(h.g]) _ _2(55(;1‘_!’,) +g g
[ gl /IRl 99 Vil Vog” g I
(3.3.33)

h.g)

lgl Tah) _ lgl =2 §(v/ThlSgmy) =2 6(\/ThlS(gm) __255@1:.) L hoS

T L Bl lgl ok IRl Vo ok T TN
(3.3.34)

Introduced into [3.3.11] and [3.3.12] taking B.3.30]into account, then comes the :

Petits’ System of Two Coupled Field Equations :

/
R 3o = (10 + Moo 333

R — Shy H = IO (T;Efi” 4 :}”:Tisﬁ’”) (3.3.36)

Which Tf;?,y and Tp,, are the interaction tensors of the two entities system corre-
sponding to the "induced geometry”, i.e., the way each matter distribution on one layer
on the universe contributes to the gLOIIlCtI’}’ of the ot.hm This system must obey the
Bianchi conditions, which are expressed by the following relationship:

VIOTU) =NNTEN =1 (3.3.37)

av

Suppose the fluids within entities g and h are perfect, with energy densities corre-
sponding to the following source tensors:

a9 0 0 0 a® 0 0 0
0 B9 0 0 0 B o0 0

(9.9) _ / (h,h) __ |

Tw” =10 o g 0 T = g o B 0 (3.3.38)
0 0 0 B 0 0 0 B

We will take {a@ > 0,89 > 0} and {a™ < 0,5 < 0}. We will ensure that
interaction laws are such that two particles belonging to the same entity attract each

"Interaction between populations of positive and negative masses.

-1
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other, while they repel each other when they belong to different entities. Let’s introduce
their interaction tensors:

algh) 0 0 0
0 B 0 0

a9 0 0
0 phm9d 0 0
0

T;Eﬁ’g) - 0 0 B9 ’Tﬁ(u%h) - 0 0 Bl 0
0 0 0 ph9 0 0 0 plh
(3.3.39)
To obtain the desired interaction laws under the Newtonian approximation, we must
choose kK = —1. The system of equations then becomes:
R — %gm,G =T (Tg;g) + %Tﬁ’”) =T (T{99) + T ) (3.3.40)

1 lg]
h h h,h h h h,h h
R( V) — —h WH = —I( ) (7 (l, ) + mq (i )> =—I () (7 (V ) + qZﬂ (g )) (3.3.41)

Verification for a non-steady, homogeneous and isotropic system

If we suppose that the bimetric universe, structured by the coupled field equations
3.3.40 and 3.3.41, is homogeneous and isotropic, the Robertson-Walker metric becomes,
according to [1]:

dr? + r2(d6? + sin? 0d¢?)
(1+ kNZ)2

(ds)? = ()2ds? — (a'P))?

] where f € {g,h}

(3.3.42)
Note that a) is the spatial scale factor, k), ¢), and I'¥) are respectively the
curvature indice, the speed of light, and the Einstein constant for each entity.

If we introduce these metrics into the system of equations 3.3.40 and 3.3.41 with
pressures p'9 ~ 0 and p™ ~ 0, we get the following classical system of equations:

3 da@\? 3k 2 2
Ch—— () N D) () O oM (M 3.3.43
(c9))2 (a<g>)2< dt ) T )2 (a0)? 7)) ()] 3349
9 d2q@ . 1 da@\ 2 L) 0 (3:3.44)
(c9)? (a@)? dt*  (c9)? (a@)? \ dt (c9)? (a®)® o
3 da™\? 3k 2 2
— 1) @) ((9) (h) () 3.3.45
(cm))?(a(h))?( dt ) T () 907 ()4 W (D)) @33.)
2 d2a® 1 da®\? )
(cM)? M A T ) (g eI (3.3.46)
)2 (am)? dt (e (am)? \ dt () (ah))
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Applying classical mathematical methods by [1|, the compatibility conditions of
equations 3.3.43, 3.3.44, 3.3.45 and 3.3.46 gives:

dalo d [p(g) (0(9))2 + Dpt (C(h))Q]
3

- =0 (3.3.47)
a9 {p@) (c@)? + p® (C<h>)2}
Qo d [¢p(g) (c@)? + p®) (C(m)?]
o+ 5 = =0 (3.3.48)
a [¢p<g> ()2 4 pth) (b)) }
So, the energy (and mass) is conserved for dust universe:
E = p9 (c<9>)2 (a<g>)3 + o™ (c<h>)2 (a<h>)3 (3.3.49)
If we have:
MON a@\? B
o = (W) . o= (W) ., 0= (3.3.50)

The coupled field equations become:

1 a®\®
R — 10,6 =TO |79 + (ﬁ) 7o (3.3.51)
1 a@\?
h — h h7h 7h’
R;(w) _ §huvH N ) T;Eu ) 4 (W) Tﬁﬁ ) (3.3.52)

If both entities are dominated by radiation. The interaction tensor in mixed mode
will be:

(£) ()2 2
e (f)O(f)2 0 0 pi ) 0 0 0
v(f) N 0 I N
T, = (1 ot? = ()
0 0 br 2 0 0 0 —pr 0
0 0 0 o eln? 0 0 0 _p7(nf)
3
(3.3.53)
with
ifpgaf) > 0 then pﬁf) >0for f=yg
ifpfnf) < 0 then pﬁf) <Ofor f=h
NB:

e In a cosmological context, the energy-momentum tensor T:(f) is used to describe
the distribution and interaction of matter and energy within the universe. For a
specific field f, the temporal component T(g)(f) denotes the energy density, which
is a primary determinant of space-time curvature. The spatial components Tf(f ),
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on the other hand, represent the pressure exerted in spatial directions, also in-
fluencing the structure of space-time. In a bimetric model, where two distinct
fields i.e., one for each layer of the universe, are considered. the associated con-
ditions describe the relationships between the energy densities and pressures for
each field, reflecting how these entities interact and collectively influence cosmic
dynamics.

e The energy-momentum tensor is expressed in a diagonal form when considering
the universe as isotropic and homogeneous, meaning that its physical properties
are independent of direction and location. This assumption. fundamental to the
standard cosmological model, is known as the cosmological principle (Section
2.2.3). Isotropy implies that the universe appears the same in all directions; there
is no preferred direction where the distribution of matter or energy would differ.
Homogeneity means that on large scales, every region of the universe resembles
any other region. Consequently. transverse energy and momentum fluxes, which
would be represented by non-diagonal terms in the tensor, are absent since there
is no preferred motion or energy flow in any specific direction. Only the energy
densities and pressures in spatial directions, which are uniform and do not vary
with direction, are manifested in the energy-momentum tensor matrix. accounting
for its diagonal shape.

e [t is important to note that the twin geometry of the Janus model is described
by two field equations, each including a mixed-mode coupling tensor 77 (9.1 and
T (h9) on the right-hand side, weighted by the square root of the ratio of the
determinants of the two 1'n(:tri(:&ﬂ We can then express expressions '(LIld
in mixed form as follows:

1 [ h i
Ru(g) SN I‘(Q‘) T':(g-g) 4. _'T*:(h'g) (3354)
J-P Petit’s 2 % 9"
Equations i
1
() N - l; (h.h) q
R® — S8H = —I®) [Ty 4 (3.3.55)

This tensor describes the negative gravitational lensing effect induced by the
masses of one layer of spacetime on those of the other. However, as we do not
know exactly how these populations affect each other, it is important to empha-
size that we are free to define the interaction tensors 77 @h) and i (9) for each
mass population in such a way that the Bianchi identities are satisfied.

5By performing the elementary calculation of the determinants of the metrics f(n‘ each species,
using the same curvature indices k(?) = k(") and the same speeds of light ¢!} = ") we can deduce
that the coefficients ¢ and © in can respectively be identified with the square root of the ratio
of the determinants \/;I and its inverse.
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For example, as we will see later in the study of the steady-state regime (Section
3.3.4), in the case where positive masses are predominant, the previous field equa-
tions reduce in mixed mode to 3.3.98 and 3.3.99 (Section 3.3.6). Thus, we can
define the energy-momentum tensor Tl’j(g’g)g and the interaction tensor Tl’:(g’h) as

follows:
pl9) 0 0 0
(9)
Tl/(gvg) — 0 _Cp(g)Q 0 O (3 3 56)
N N ~
c’ 9)
0 0 0 — gg)Q
p(g) 0 0 0
0 2% 0 0
v(g,h) _ @)
T 0 0o Zz:g); 0 (3.3.57)
o o0 o0 29

c(9)?

By applying the Newtonian approximation'? to the Tolman-Oppenheimer-Volkoff
differential equations 3.3.182 and 3.3.225 that result, we find the Euler equation
< expressing the hydrostatic equilibrium!! approximately equal to —% for
each equation. Thus, we obtain the pressure il; as being approximately equal
to —£3 for each equation (See the section 3.3.6 & the study of the Compatibil-
ity of Field Equations in the Limit of Weak Fields). Therefore, both equations
asymptotically satisfy the Bianchi identities in the Newtonian limit.

e From a physicist’s perspective, the focus is primarily on observable or measur-
able phenomena. However, in our “visible” universe, made up of galaxies with a
significant retinue of matter and gas, the density of negative mass is negligible
according to the interaction principle of the Janus model where masses of opposite
signs mutually exclude each other (Figure 3.12). Therefore, the modeling of the
behavior of ordinary matter (including neutron stars) under the effect of gravi-
tation aligns with the solutions of Einstein’s field equation, without the need to
consider interaction tensors, deemed negligible. Indeed, they only become signif-
icant in a spacetime dominated by negative masses such as the Dipole Repeller.
With positive mass density in turn being negligible, equations 3.3.54 and 3.3.55

reduce to:
r9 _ teva —p@ | Ppring (3.3.58)
1 9w g * o
1
Ry — o H = T (3.3.59)

9(13.1) page 425 de [1]
O4rr3p <« mc? and QST <1

1'Where the pressure at the center of the star is balanced by the gravitational force as a function of
density and mass
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Thus, a physicist will only study what can be observed, namely the first equa-
tion 3.3.58, allowing, for example, to determine the geodesics traveled by photons
(of positive energy) under the antigravitational effect generated by a spheroidal
conglomerate of negative mass'?2. See the study of the Compatibility of Field
Equations Near the Dipole Repeller.

Next, by introducing radiative pressure induced by each entity:

2 2
AN )

3.3.61
3 Y T 3 ( )

pY =

We can then consider that the entity carried by the metric A, referred to as dark

energy and dark matter, could be attributed to negative masses which, in the radiative
phase, would obey the same equation of state:

(h)
Q@
g = — (3.3.62)
3
Under these conditions, the conservation relation is still expressed, in its radiative
form, by the conservation of the sum of the two energies, that of the photon gas and
that of the negative masses:

pfﬂ) (C(g))2(a(9))4 + a(h)(a(h))‘l — Constant (3.3.63)

The exact solution of the system, for curvature indices k9 = k™ = —1 and T') =

—82—4G where f € {g,h}, becomes a solution of the following equations:

2409 1)
(g)2d a _ . F A
a0 . (3.3.64)

2,(R) (h)

de? 2
If we suppose that £ < 0, then ¢ > 0 and ¢® < 0. Thus, we can conclude that
the visible part of our universe accelerates, while the negative species decelerates. Here,

(3.3.65)

12This phenomenon of negative gravitational lensing cannot be produced by a neutron star of negative
mass, since this conglomerate is composed only of antimatter with negative mass, which can form
immense proto-stars where the agitation speed of these components is negligible compared to the
speed of light in this medium (see section Nature of the primordial antimatter). The approximate
form of the interaction tensor can then be reduced to the following expression:

oM™ o 0 0

T (h9) 0 000 (3.3.60)
0 00 0
0 00 0
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we observe the effect of the dominant negative species, which leads to the phenomenon
of cosmic expansion acceleration, as the right-hand side of the first equation becomes

positive ([61]):

46 T T T T T 46 T T T T T T
- 44 o
g - lé,- 42 |- -
5 5
+ . + 40 “1
S S
= =
' . L .
.= 2 - = ACDM with (Qy, ©,)=(0.295,0.705)
=i g J
il 1 — Bimetric with g, = -0.087
= . = 36 H g bt 4
b 34 o
3 L ; ; : i 5 i i i : L
0 0.2 04 0.6 0.8 1.2 1.4 0 0.2 0.4 0.6 0.8 1 1.2 1.4

Z

Figure 3.10: Hubble Diagram of the Two Models (Linear Redshift)
(after Gilles d’ Agostini )

This two-species system allows for the consolidation of the effects attributed to dark
matter and dark energy into a single entity composed of negative masses that combines
both actions, as illustrated by the following diagram:

ACDM Model Janus Cosmological Model

mDark energy @ Dark matter W Ordinary matter

® Ordinary matter W Negative masses

Figure 3.11: Models of the Universe

Local verification of a stationary system

In the study of the universe, we often simplify models to make them more manageable.
One common simplification is to consider a small region of space as being effectively
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empty and isolated from the vast complexities of the cosmos. This approach is partic-
ularly useful when we’re interested in phenomena that occur over short periods, much
shorter than the timescales on which the universe itself changes. In such cases, we can
use "time-independent” metrics, which means we assume the structure of space doesn’t
change with time during our observation.

To add a bit of complexity, we sometimes introduce what are called "perturbations”
to the model. These perturbations are small modifications of an otherwise simple space
that we consider. They allow us to study how slight changes or disturbances might
affect the system. In our case, these perturbations are represented by terms like fy,ssf,)
and %(j,ﬁ), which signify small deviations in the geometrical structure of space, potentially
representing different aspects or components of the universe.

9 =0 +ev0), g =) + el (3.3.66)

nv 2z pv

For the metrics, we have:
(ds'9)? = (cl9)?dt* — (a'9)?[(d€")? + (dE?)* + (d&®)’] (3.3.67)

(ds™)? = ()2 dt® — (a™)?[(de")? + (d€*)* + (d€*)?] (3.3.68)

In cosmology, when we talk about "quasi steady-state conditions”, we mean a situ-
ation where certain aspects of the universe are assumed to be relatively constant over
the period we're studying. Specifically, in this context, the "spatial scale factors” of
the universe, which describe how the universe’s size changes over time, are considered
constant. This is a useful approximation for studying certain short-term phenomena.

To go deeper into the physics of such a scenario, we use what’s known as a "series
expansion” of the field equations. This is a mathematical technique where we break
down complex equations into simpler, more manageable parts. However, we only focus
on the most significant parts — in this case, we ignore the terms of second order and
higher, as they have a minimal impact on the results for small-scale or short-term
scenarios.

The resulting simplified equations, labeled as 3.3.69 and 3.3.70, describe the behavior
of perturbations in this quasi steady-state universe. These equations involve terms like
Yoo and dp, which represent small changes in the geometry of space and density of
matter, respectively.

(h)\ 3
(9 _ 2 a h R)) 2
8’70?”5‘5 = —F(g) [50(9) (C(g)) + <m) 5P( ) (C( )) ] (3.3.69)
(h) i 5o oo (TOY 5 @ o
S,YOOWW = F 5p (C ) -+ m (5p (C ) (3370)

Furthermore, we define "gravitational potentials” for each component of the universe,
denoted as ¥ and W™, These potentials are related to the changes in space geometry
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and are key to understanding the gravitational effects in different regions or components
of the universe (as 2.3.112).

9))2 (h))?
v = (62) D gt = —(62) er (3.3.71)
We obtain :
52y la) (a(m)? ) MON 5
Z 85(1(%& _ (g)T 5p(g) (C(g)) + (W) 5p(h) (c(h)) (3_3_72)
52 (h) (a(m)? ) a@\? 5
Z_; M _ F(h)T spt (C(h)) + (m) 5pl9 (C(g)) (3.3.73)

In physics, particularly in the study of space and the universe, as we saw it on this
section 2.3.9, "geodesic equations” describe how objects move under the influence of
gravity. In simple terms, these equations tell us the path an object will take when it’s
moving only under the force of gravity. For example, how planets orbit stars or how
objects fall on Earth.

In our scenario, we're dealing with two different layers (or sheets) of the universe,
each with its own properties. The first layer, which we can think of as the ordinary
matter universe, follows one set of rules. The second layer of negative masses, associated
with dark matter and dark energy follows another set.

Next equations 3.3.74 and 3.3.75 are the way of mathematically expressing how ob-
jects would move in these two different layers (The layer of ordinary matter and that of
negative masses respectively). These equations resemble the classical Poisson equation
in physics, which is used to describe gravitational fields. However, the equations have
a twist — they account for different "speeds of light” in each layer. This modification
is crucial for exploring theories that go beyond our standard understanding of physics.

d2e 1 0vw
2¢a (h)
et 1 oY (3.3.75)

A2 (a)? 9

The interaction laws we have chosen ensure that the entities arising from the layers
structured by the metrics g and h mutually exclude each other (3.12).

—&<8 - ~@/e>= OO

Figure 3.12: Laws of interaction between masses
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Therefore, we can consider a region where only one of the two entities is present.
Focusing on the reference frame structured by the metric g, which is populated by
ordinary matter such as in the solar system, the system of coupled field equations
simplifies to:

1
R{f) — 509G = TOT{ (3.3.76)
R _ lh H=—-1W MT(g,h) 3.3.77
po Tttt |h| "+ (3.3.77)

The first equation can be identified with Einstein’s equation without the cosmolog-
ical constant A. This equation represents the standard model of gravity for ordinary
matter. The second equation captures what might be termed "the induced geometry
effect”. It describes how the geometry of space, influenced by the presence of ordinary
matter within a sphere of radius » and density p(9 = p, affects the geodesics of the
negative masses layer. Consequently, we can deduce that this bimetric model, in which
ordinary matter in one layer interacts with negative masses located in a second aligns
with the standard tests of general relativity at the local level. Nevertheless, it remains
crucial to verify the coherence of this system under stationary and non-homogeneous
conditions.

Nature of the primordial antimatter

Following A. Sakharov’s propositions in [63], [64] and [66], suppose that the matter/an-
timatter pair in the first layer of our universe consists of quarks and antiquarks with
positive energy. Meanwhile, a matter/antimatter pair in a second layer is formed by
quarks and antiquarks with negative energy. If the synthesis of matter in the first layer
(the first pair) were faster, while the synthesis of antimatter in the second layer (the
second pair) were slower, this could lead to the hypothesis that objects at the centers
of large voids in the large-scale structure of the universe, as indicated by the dipole
repeller phenomenon, are composed of antimatter. This antimatter includes antipro-
tons, antineutrons, and antielectrons of negative energy'®. These could form spheroidal
objects made of antihydrogen (light elements) with repulsive properties similar to im-
mense proto-stars that formed during the primordial radiative phase (at the beginning
of the universe).

The lacunar network of positive mass confines this space of negative density, pre-
venting them from merging. Conversely, these conglomerates of negative mass act as
anchor points for this porous network in the universe of positive masses, ensuring over-
all stability.

13Negative masses ([72]).
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Indeed, the stars with positive mass initially resemble spheroidal clusters of gas,
heated to high temperatures. These proto-stars gradually cool down, emitting radia-
tion primarily in the red and infrared spectra. To transform into actual stars, matter
and gases must undergo gravitational contraction, reaching sufficiently high tempera-
tures and densities to initiate thermonuclear fusion reactions. This contraction process
releases thermal energy, which is radiated from the star’s surface in the form of electro-
magnetic radiation, including visible light. This energy release scales with the square of
the star’s radius. Larger stars have greater surface areas and can dissipate more heat.
However, the amount of heat produced scales with the cube of the star’s radius, which
is tied to its volume. Thus, for very massive stars, the cooling rate can be relatively
slow, and it can take a considerable amount of time before the temperature reaches the
threshold necessary to trigger the thermonuclear fusion reactions that allow the star to
shine.

In our positive world, it is considered that nuclear fusion reactions can begin at
the core of a proto-star when the temperature reaches an optimal temperature of ap-
proximately 10 million degrees Celsius. It is at this temperature that the hydrogen
nuclei, which make up the majority of the matter in the proto-star, acquire enough
kinetic energy to overcome the electrostatic barrier due to their positive charge. When
this barrier is crossed, the hydrogen nuclei can fuse to form helium, thus releasing a
considerable amount of radiant and thermal energy. This optimal temperature enables
a more efficient nuclear fusion reaction, producing the characteristic brilliance of stars.

Thus, a very massive and very hot negative mass proto-star can take a long time to
cool down sufficiently for fusion reactions to begin because the proto-star’s contraction
process must generate enough heat to compensate for the heat loss at the surface.

As a result, these massive negative mass proto-stars have such long cooling times
that they will never ignite (exceeding the age of the universe). Consequently, no galaxy,
heavy element, molecule, or any other form of matter necessary for the development of
life in the negative world can form.

2D numerical simulations

Two-dimensional numerical simulations have been performed using two sets of 5000
mass points, representing clusters of ordinary matter (population density p(g)) and
negative masses (population density p™). A significant asymmetry was maintained
between the two populations, with |p")| being much greater than p(9). Additionally,
Maxwellian distributions of 2D thermal velocities were applied to both sets, with the
average velocity of the negative mass distribution being four times higher than that of
the ordinary matter.

These simulations revealed a lacunar structure of negative masses at the centers
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of large voids in the large-scale structure of the universe. As the Jeans times vary
inversely with the square root of the density, the development time for the negative
mass distribution is shorter. This results in the formation of a regular network of
spheroidal conglomerates. The distribution of ordinary matter, consequently, is forced
to occupy the remaining space, leading to a lacunar structure similar to a set of joined
soap bubbles in three-dimensional simulations. This pattern was also observed by
Brennen in 1995 [13] (Figures 3.13 and 3.14), as cited by El-Ad in 1997 (|25]).
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Figure 3.13: Distribution of Ordinary Matter and Negative Masses when |p®| > p9)

Figure 3.14: Spheroidal Lacunar Structure

It is important to consider that in the study of negative masses, we lack observational
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data to compare with potential numerical predictions, except for the geometry effects
induced by this reference frame (that of negative mass) through gravitational lensing
phenomena that structure the metric g,,. Therefore, the pressure derived from the
Tolman-Oppenheimer-Volkoff (TOV) differential equation 3.3.225 in spacetime struc-
tured by the metric h,, will always remain hypothetical. As a result, it is impractical
to attempt to structure the interaction tensor T} @M from the second field equation
3.3.99 (Section 3.3.6). Indeed, we will never be able to compare the results obtained
by calculating the geodesics of h,, with observational data related to the movement of
particles with negative mass. Instead, we must work with a function 5(r) (unrelated to
negative pressure) solely to ensure the existence of a solution in this frame of reference
(3.3.104). The most important aspect is to define the tensors in mixed mode 3.3.56
and 3.3.57 of each field equation in such a way that the pressure f—; expressing the
hydrostatic equilibrium for each equation is the same and thus asymptotically satisfies
the Bianchi identities in the Newtonian limit.

To fully understand this induced geometry effect, one must place themselves within
the context of the system with two coupled field equations of the model. Indeed,
it is important to recall that it structures a 4D hypersurface according to 2 metrics
associated with 2 distinct spacetime layers. Each type of mass is associated with its
own metric, implying that a mass always creates a positive curvature in spacetime
according to its own metric (where the mass emits photons of visible energy) and
always a negative curvature in the conjugate metric (where the mass emits photons of
invisible energy) as we can see on next figure 3.15.

negatlve
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S positive curvature
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Figure 3.15: Induced geometry effect

At the left of the figure 3.15, the massive blue object belonging to the positive
universe creates a positive curvature. Consequently, it produces a positive gravitational
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lensing effect on the image of a small positive mass m™, causing the convergence of
photons with positive energy ¢+ around the massive blue object. However, this massive
object induces a negative curvature in the negative universe. Therefore, even though it
is invisible, its apparent mass in the negative universe is "felt” as if it were negative.

Conversely, At the right of the figure 3.15, the massive red object belongs to the
negative universe. It creates a positive curvature relative to its frame of reference (and
not a negative one). This massive object induces a negative curvature that is perceived
in our universe, even though its energy photons are invisible. Hence, we conclude that
its apparent mass is negative. Indeed, it produces a negative gravitational lensing ef-
fect on the image of a small mass m™, causing the divergence of photons with positive
energy ¢ around the invisible massive negative object, whose gravitational effect is
still present.

We can deduce several corollaries from the concept of negative mass:

e Fundamentally, there is no negative mass (and therefore no negative energy). At
least, the "negativity of mass” (and the "negativity of energy” as both are obvi-
ously linked) is not an intrinsic physical property of a "negative mass particle”.
Indeed, the "negativity” or "positivity” of mass is merely a quantity of curvature
measured locally in spacetime by an observer. The sign of this curvature is rel-
ative to the reference frame of the hypersurface or metric in which this mass is
measured. It is, in fact, an apparent mass whose presence is only revealed by the
curvature it induces in spacetime.

In other words, all particles with mass in the universe possess exclusively pos-
itive inertial mass, but their gravitational mass is relative. The sign of their
gravitational mass is opposite (positive or negative) depending on the perspective
adopted: a mass distorts spacetime in its own metric, inducing a certain amount
of curvature that is always positive. However, it will be perceived as an apparent
mass in the opposite universe, from which an observer will perceive this curvature
as negative. This is due to the coupled nature of the field equations, and it results
in an effect known as conjugate curvatures. One could speak of "the same mass
inducing two opposite curvatures”.

For example, Earth, seen from our reference frame, possesses positive mass.
Through an unknown process, imagine that you could reverse its energy (and
its mass). Earth (and all the stars in the sky) would disappear because you can
no longer perceive photons with positive energy. However, you can still perceive
and measure the curvature it continues to induce in our spacetime. By perform-
ing this measurement, you would detect that the now-invisible Earth possesses a
negative mass.

However, there is no distinct universe of positive energies and a universe of neg-
ative energies. It is merely an arbitrary choice in nomenclature. Both are equiv-
alent. By convention, we refer to the sector of the universe where we live as the
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one composed of positive mass matter. The reversal of the arrow of time does
not mean that we start living "backward” and become younger. It is manifested
physically by the inversion of particle energies. Once again, this inversion is a rel-
ative observation. In practice, it translates to a transition to the opposite sector
of the universe.

e It is important to note that particles of negative energy (and their photons)
cannot be detected by optical instruments because they follow geodesics of their
own metric h,,,, distinct from the geodesics of our metric g,,,. There are, therefore,
two sets of geodesics that never "cross” each other. Since positive-energy species
and negative-energy species cannot see each other and evolve along two distinct
families of geodesics, the two spacetime reference frames in which they reside
are respectively referred to as the positive mass frame and the negative mass
frame. Thus, these are two frames within the same 4D hypersurface, structured
by two coupled field equations, not just one. However, even though negative
masses are invisible to us because they do not interact electromagnetically with
our sector without exchanging photons, they only reveal their presence through
an anti-gravitational effect, as they induce opposite curvatures in our observable
sector.

e Negative masses are distributed throughout the universe, but their proportions
vary depending on the region of space we are in. They exist solely to contribute
to its stability through an anti-gravitational effect. The universe can be defined
by a hypersurface structured by two metrics that allow distances between points
to be measured in two different ways, using two distinct sets of coordinates (three
spatial coordinates and one temporal coordinate). In a didactic manner, one can
envision this universe as a sheet of paper with two different measuring grids on
each of its two sides.

3.3.5 Future Perspective
Experimental Approach to Mass Inversion

The scientific approach to understanding a phenomenon can be summarized in the
ability to reproduce and measure it. It is important to note that it is entirely possible
to demonstrate the phenomenon of mass inversion in a laboratory by inverting an
infinitesimal amount of matter, provided that a significant disruption of this matter can
be induced by producing electromagnetic parameters on the order of tens of millions of
tesla for a very short time, using explosives, for example. The Soviet Union had already
achieved a production of 100 million amperes by compressing a magnetic flux with the
help of explosives in the 1950s, using a magneto-cumulative generator (|46]). It would
then be possible to demonstrate this mass inversion by measuring the gravitational
waves emitted and detected by the Virgo and Ligo laser interferometers.
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Experimental Protocol for the Study of Mass Inversion via Nuclear Metastable
States

This approach proposes to explore the phenomenon of mass inversion in the laboratory
by exploiting the metastable states of specific atomic nuclei, such as those of platinum,
iridium, cobalt, and xenon. The goal is to store energy in these metastable states
before releasing it to induce a disruption of matter. The detection and characterization
of this phenomenon would be carried out by observing the emitted gravitational waves,
measured using finely calibrated interferometers.

Nuclear Ezcitation: The first step of the protocol requires the excitation of atomic
nuclei to their metastable states. The energy levels required for such excitations are sig-
nificantly higher than those provided by standard laboratory lasers, lying in the range
of MeV (Mega Electron Volts) to GeV (Giga Electron Volts). Consequently, this proce-
dure requires the use of a particle accelerator capable of generating and concentrating
these high energies on the targeted atomic nuclei.

Isotope Selection: A meticulous selection of the appropriate isotope is essential.
The chosen isotope must have a metastable state whose half-life corresponds to the
desired time frame for energy storage. This half-life must be short enough to allow
controlled release of the energy, yet long enough to ensure temporary storage of the
injected energy. The ideal half-life would be on the order of a fraction of a second.

Measurement of Gravitational Waves: The detection of mass inversion would
be carried out by measuring the gravitational waves emitted during the disruption of
matter. This step involves the use of high-precision interferometers, calibrated to detect
extremely subtle variations in the gravitational field resulting from the experiment.

Concluston: This experimental protocol proposes an innovative method to study
mass inversion, a still theoretical phenomenon at local scale. The experimentation
requires cutting-edge equipment, notably a particle accelerator, and expertise in nuclear
physics, optics, and the measurement of gravitational waves.

Quantification of Gravity

An unification of the Theory of Relativity with Quantum Mechanics would only be
possible through the quantization of gravity. However, there is no concept of energy
quantization in the Theory of Relativity, except for the mass-energy equivalence since
Einstein’s field equation does not fundamentally describe particles. This is why string
theory is the only contemporary approach accepted and acceptable to bridge the gap
between Relativity and Quantum Mechanics. Nevertheless, this unification is impossi-
ble within this approach because Quantum Mechanics considers forces in terms of fields,
and a particle is required in these fields to convey interaction. For instance, the photon
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is the elementary particle that conveys the electromagnetic field, and its quantization
is possible because of the consideration of positive and negative electric charges. Con-
versely, the only particle emerging from string theory to convey gravity is the graviton,
but this pseudo-particle has never been experimentally observed. Indeed, the concept
of quantum gravity remains speculative within this model. An alternative conjecture
for quantizing gravity at the quantum scale would involve considering the existence of
masses with opposite signs that exhibit repulsive properties within the model, similar
to the model of photons with oppositely charged electric charges to convey interaction.
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3.3.7 Compatibility of Field Equations in the Limit of Weak
Fields

To achieve a complete geometric solution, the model must be capable of reproducing
the solution initially developed by K. Schwarzschild in 1916 [69], and extending it to
the internal geometry of a sphere filled with incompressible fluid [68].

Mastery of this solution is crucial for calculating the attenuation of the brightness of
a distant source, after the light rays it emits have passed through a cluster of negative
mass. Indeed, while photons of positive energy interact with positive mass matter?,
they only undergo an anti-gravitational interaction when passing through a negative
mass. The schematic representation of this phenomenon is illustrated in 3.16.

Figure 3.16: Deflection of photons of positive energy by a negative mass.

An analogous situation would arise if we considered a beam of parallel neutrinos
of positive energy (or of low mass) passing through a homogeneous mass, also positive
(figure 3.17). The trajectories, in both cases, when the curvature remains moderate,
are very close to hyperbolas. In both cases, the angle of deviation, whether positive
or negative, reaches a maximum (C) when the geodesic is tangent to the limit of the
mass, positive or negative. It then decreases steadily to zero at very large distances
(D). The angle of deviation is null, due to symmetry, when the geodesic passes through

2Theing emitted or absorbed by it
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the center of the mass (A).

Figure 3.17: Deflection of positive energy neutrinos by a positive mass.

In this calculation of the geodesic trajectories corresponding to this "Schwarzschild
interior solution” [68] and under quasi-Newtonian conditions, particles, with null or
non-null mass, undergo the deviation (B) which would correspond to the action of the
mass contained within the dotted sphere, concentrated at the center. A sphere tangent
to the line (C) corresponds to the maximum deviation. For line (A), passing through
the center of the sphere, it is null. At distance (D), the deviation tends towards zero.

By developing a calculation similar to the construction of the interior metric (14.47)
of [1], we can write:

ds@? = —e"? 429 1+ X dr? 4 12dg? + 12 sin? Od¢? (3.3.113)
ds®? = —e"™ 0% 4+ AP dr? 4 12dg? 4 12 sin? Od¢? (3.3.114)
Let us now consider these two metrics under the signature (+ — ——):
ds@? = /P 4507 _ AP 4p2 242 12 gin2 dg? (3.3.115)
dS(h)2 _ ey(r)(h)deZ . GA(T)(h)dTQ - 7“2d(b2 o 7,2 sin2 9d¢2 (3.3.116)

In the framework of general relativity, the form of the metric describing a spheri-
cally symmetric and static spacetime is often expressed in terms of specific functions to
facilitate the analysis of Einstein’s equations. One of the most suited solutions to these
equations is the exterior Schwarzschild metric 2.3.115, which describes the spacetime
around a point mass in empty space. This solution does not explicitly make use of ex-
ponential functions in its most well-known form, but more general forms of spherically
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symmetric metrics can introduce them to model various matter configurations.

In situations where the matter distribution is not point-like or in regimes of strong
spatio-temporal curvature, exponential functions such as (") and e*") can be intro-
duced to describe the gravitational potential and the curvature of space. These ex-
ponential functions facilitate the mathematical handling of differential equations by
ensuring certain physical properties, such as the flatness of spacetime at infinity?®.

The function v(r) is related to the gravitational potential perceived by an observer
at infinity, while A(r) concerns the space curvature due to the presence of matter. For
a general spherically symmetric metric, the line element can be written in the form
3.3.115. This formulation allows adapting the metric to different matter distributions
and capturing the behavior of gravity in varied contexts, ranging from weak gravita-
tional fields to extreme regimes near supermassive objects such as neutron stars. Thus,
the gravitational potential can increase in an "ezponential” manner near such objects,
and exponential functions can capture this behavior accurately.

In the continuation of our analysis, we will rely on the system of equations 3.3.98
and 3.3.99 in the steady-state regime where negative masses are negligible compared to
positive masses. We will then determine the solution for each of these field equations
in the Newtonian limit.

Solution to the First Field Equation 3.3.98

We can express the metric tensor 3.3.115 as follows?:

e’ 0 0 0 e V() 0 0 0

|l 0 =™ 0o 0 w_ | 0 =0 0

I =1 0 0 —r2 0 9 =1 o 0 -4 0
0 0 0 —r’sin*f 0 0 0 —=op
(3.3.117)

And we know that :
g =3 (3.3.118)

We will now calculate the Christoffel symbols®® of the metric tensor 3.3.115 accord-
ing to the relation 2.3.71.

28This is a characteristic of Minkowski spacetime.

To simplify the notation, the exponent (g) will not be considered throughout the demonstration.

30The Christoffel symbols are also known as the Levi-Civita connection coefficients, as we have seen
before.
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It is noteworthy that this is a static and spherically symmetric metric often used in
general relativity. The non-zero components of the metric tensor are:

g = e (3.3.119)

Grr = —7) (3.3.120)
2

9og = —T (3.3.121)

gop = —1sin’ 0 (3.3.122)

And the components of the inverse metric ¢°* are simply the inverse of the diagonal
elements3!:

gt =) (3.3.123)
g7 =—e (3.3.124)
1
= — (3.3.125)
1
g% = Ry (3.3.126)

Given that this metric is diagonal, the calculation simplifies considerably. Many of
the Christoffel symbols will be zero because the partial derivatives of the non-diagonal
components are zero. We only need to calculate the non-zero components for:

[ ]
—
<3

1 1 1 1
Ih=59" (—%> = S(=e™) {—i(e”)] Lt ¢ (3.3.127)

2 or 2 dr 2 dr
I, :
. o % o (%9:) _ %(—ek) [%(_@} _ %% _ %x (3.3.128)
" o %gw (_%) _ %(_GA)(_QT) — re (3.3.129)
) o = %g”“ (_a§i¢) = %(—6_)\)(—27’ sin?#) = re > sin® 0 (3.3.130)

31The non-diagonal elements are zero.
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o [V, et Ff¢ :

Iy =T%, = %g% (%) = % <—le) (—=2r) = % (3.3.131)
o I,
I, = % b0 ( %) = % (—%2) (—2r*sinfcosf) =sinfcosf  (3.3.132)
° FZ)¢> :
F$¢ = %g‘w (%) = % (_7“2 si1n2 9) (2r?sin § cos #) = cot § (3.3.133)
o It

1 8gtt 1 _ d 1dv 1
t __ it —Jir _ = v RN 2 _ -7 _ = /
b=139 ( or 2¢ \ar° odr ~ 2" (3:3.134)

We can then calculate the necessary components of the Riemann tensor to obtain
one of the R, components of the Ricci tensor in a spherically symmetric spacetime
according to the following relation (derived from 3.3.20):

Ry = Ry, + Rip + Ry, (3.3.135)
However, the first component is given by:
R, =017, — 0,1, +T,I'N —T7, T (3.3.136)

Thus, by substitifying each Christoffel symbol with its previously calculated value,
and considering that the metric is static, we obtain:

. 1, V2N
R = —5¢ * (r/’ t - ) (3.3.137)

The second necessary component RY%, is also trivially calculated:

Rl = —T9 I7, (3.3.138)
11
Rl = —;561/_)\1/, (3.3.139)
1
RY, = —Ze”_’\l/ (3.3.140)
(3.3.141)
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The last component Ry, is identical to R, 2:
RS, = — Ly (3.3.142)
tot 2r

Finally, by combining the different terms of the temporal component R;; of the Ricci
tensor, we obtain:

" 12 /

)\I /
Rtt — el/—)\ (_% _ VI + 41/ — %) (33143)

Using the same method, we can deduce the other diagonal components of the Ricci
tensor:

V// V/)\/ V/Q A/

Ry, = — — - 3.3.144
> 1 I ( )
! A/
Rop = ¢ (1 2 —T) 1 (3.3.145)
2 2
Ry = Rpgsin® 0 (3.3.146)

To determine the Ricci scalar®?, we must first express the components of the Ricci
tensor using mixed indices. For this, we raise an index using the inverse metric according
to the following relation:

3
R:=Y"g"R,, (3.3.147)

p=0

Thus, we obtain :

7 12 10 /
A

IR (U S

" /)\/ /2 )\/
R =g R, = — (% . ”4 + UZ - 7) (3.3.149)

3 1 v 1
Ry = ¢" Rgg = —e* (T—Q + 5 - Z) +5 (3.3.150)
R, = R} (3.3.151)

We can deduce the Ricci scalar:

R=R!=R+ R+ Rj+ R, (3.3.152)

" N/ 12 / bV 1 )
R =27 <—%+ 4” —%—%+7—ﬁ)+ﬁ (3.3.153)

32Due to the isotropy of the angular coordinates
33The Ricci scalar quantifies the total curvature of spacetime
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However, the Einstein tensor in mixed mode is given by the following relation:

v v 1 v
Gy, = R, — S R0,

Thus, we can establish each of the components of the Einstein tensor:

1 1 X 1
Gi= R~ g = Ri- g = (-2 ) -

2
1 1 1 v\ 1
GZ:R,ﬁ—iRéﬁ:R;—éR:eA<_+Z)__

1 1 V75 VRV ey Y
Go=R)— -RS)=R)—-R=¢|—=— —
A O T R
Now, if we consider the Einstein field equation in mixed mode:
EZ = XT:

We can express its components within the same mathematical context:

Then:

XT! = XT! = —(V + V) —
-

(3.3.154)

(3.3.155)
(3.3.156)

(3.3.157)

(3.3.158)

(3.3.159)

(3.3.160)

Let us examine the classical construction of the interior metric starting from the
expression of the energy-momentum tensor 7} @:9) from the first field equation 3.3.98

in its classical mixed-mode form?3?:

p 0 0 0

v(9,9) _ 0 _c% 0 0

T 0 0 -5 0
0 0 0o -5

34(13.1) page 425 de [1]
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The equations 3.3.159 and 3.3.160 are then expressed as follows:

1 N 1
Y

—_ | - == 3.3.162
¢ (7‘2 r ) 72 Xp ( )

1 v 1 D

Y .
" AV 12 / /

(v 17 7 V= P
z o z — i .3.164
(2 1 2 ) e (3:3.164)

/ )\/
LA Y (p + %) (3.3.165)
r c
From which we can deduce:
1 N 1 VUN U =N
Y Y
— ] - = = — — — 3.3.166
¢ <7"2 7") 72 ¢ {2 4+4+ 2r ] ( )
1 1 V2 UN VN Y
A

- - _ R 3.3.167
¢ rz 2 4 + 4 + 2r 2 ( )

To solve these differential equations, we can proceed in a manner similar to expres-
sion (14.15) from reference |1] in chapter 14 by setting:

2
o122 oy = (1—e?) (3.3.168)
T
With : oM
m== (3.3.169)

Considering 3.3.162, if we derive this expression, we obtain3:

2m' = (1—e™) +r\e? (3.3.170)
om’  —14e*r—rNe? 1 (1 N
_ 7,,2 — 7’.2 = _ﬁ —|— e (T_Z — ?) (33171)
2 4 2G
m =" ;‘p - W; P (3.3.172)

Similarly to equation (14.18) from [1], we can deduce:

Gp [" 4 G
= — drridr = -7 p— 3.3.173
m(r) 2 /0 mridr = omrp ( )
Thus, expression 3.3.163 coupled with expression 3.3.168 allows us to obtain:
2
, r pr (r —2m)
=— | x—=+1]| ——= 3.3.174
g r(r —2m) ( e * ) r(r —2m) ( )
35By convention, we adopt the value of Einstein’s gravitational constant xy = 78ng according to

(10.98) in [1].
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Then : i
m -+ wGpr

V=2——< (3.3.175)
r(r —2m)

However, by deriving expression 3.3.163, we obtain:

p 2 a1V (=2, vV
From which by simplification:
p/ 2 Y )\l )\/V/ 2 V// V/
yE = = - - — 4= 3.3.177
2 3 (7"2+ r +7"3 7"+7"2 ( )
p/ 2 e—)\ )\/ )\/V/ 1 V// I//
E = 9 ([ — - — 4 — 3.3.178
2 3 T (27" i 2 N 2 2 * 2r ( )
p/ 2 e—)\ 1 V/Q )\/1// )\/ _|_ V/ V” I/,2 )\/V/
E = o [ T - — 4+ — 3.3.179
2 3 r (r2 4 - 4 i 2r 2 N 4 N 4 ( )
By combining this result with expression 3.3.167, we can deduce:
4 v !
B = e A 3.3.180
c? c QT(V + ) ( )

Hence, the following expression by coupling with relation 3.3.165:

p/ 67>‘ , , v ( p) v / 4 ( )
e = Z = £)Z E-_Z £ 3.181
2 NS =xpt )5 = 2 p+ (3.3.181)
Considering expression 3.3.175, we then arrive at the classical Tolman—Oppenheimer—
Volkoff (TOV) equation ([44], (14.25¢) from [1]):

v _m+—4”ff’“3< )

c2

e P (3.3.182)

We can conclude this calculation by obtaining the explicit form of the interior met-
ric, still within this quasi-Newtonian framework.

Indeed, taking into account relation (14.28) from [1] for r < R¢*®, and the obtained
mass 3.3.173, we can already establish one of the terms of the metric from 3.3.168:

N 2m(r) 8 G 7 r?
A _ 2 A
The interior metric 3.3.115 can then be written as follows:
2 v(r) 7,02 dr? 21,2 22 2
ds” = e""dz™ — —— —r°d¢” — r”sin” 0d¢ (3.3.184)
T2

36corresponding to 6.1.2 which we will demonstrate in section 8
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Let us now determine the function v(r) knowing that the density of the star is
assumed to be constant. We then obtain from 3.3.181:

9 ! 2 2 !
v=——T o = _M = —2In(pc® + p)’ (3.3.185)
pc? +p pcs +p

Then :

v 881G
_g =In(pc*+p)+C1 = ¥ De 2= :2 < + %) =X <P+ (%) (3.3.186)

Considering 3.3.165, we can solve this equation as follows:

TN v v d
L X (p + %) =-De 2 = rDe?=Ve tNet=ver——(e?)

r dr
(3.3.187)

Thus, from 3.3.183, we obtain:

_v r? d r? r? 2r
rDe 2_1/(1—§)—5(1—§>—V/ (1—5)4‘5 (3-3-188)

By setting:

er =7(r) = A = %e% (3.3.189)
Hence, 3.3.188 allows us to obtain:
v r? 2r o r? 2r
rD =1'e> (1 — f—Z) +oger = 2+ (1 — 75) + 57 (3.3.190)

The resolution of first-order linear differential equations relies on the superposition
of solutions. The general solution is the sum of a particular solution to the nonhomo-
geneous equation and the general solution of the homogeneous equation. This method
exploits the linearity of differential operators to construct a comprehensive solution that

encompasses all possible behaviors of the equation®®.

#2D 39

Thus, a particular solution to this equation is v, = =-.

37By applying the exponential to each side of the equation, we introduce a new integration constant
D = ¢“ that must be consistent with the structure of Einstein’s field equations for a perfect fluid.
In these equations, the energy-momentum tensor 7}, is proportional to the Einstein tensor G, via
Einstein’s gravitational constant SZ4G, linking spacetime curvature to matter distribution. Thus, the
equation De™2 = pc? + p can be rewritten as follows: De™ 2 = SZ—ZG (p + c%), where D is determined
by the specific boundary conditions for a constant matter density p.

38The resolution of first-order linear differential equations often involves using the superposition
of solutions. This method is based on the fact that differential operators are linear, meaning if two
functions f;(z) and fa(z) are solutions to a linear differential equation, then any linear combination
of these functions afi(z) + bf2(z) is also a solution.

39Indeed, this solution applied to the right-hand side of equation 3.3.190 yields the left-hand side.
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And the general solution of the homogeneous equation is given by*:

2 2\ 1/2
u’<1—%)+gu:o - u:—B(l—%)
T T T

Proof. Let’s integrate both sides of the equation.

(3.3.191)

The integration of the left-hand side involves u and its derivative u’, while the

integration of the right-hand side is with respect to r.

u’ r
/;d“:—/mdf

1
Inu = 5111(?’2 —r’)+C

This yields:

From which we get:

This allows us to obtain the temporal component of the metric tensor:

2y 172
A—B(l—%) ]
P

By identification and considering 6.1.2, we obtain:

14
gJoo =€ =

72D A 2p87G 2p
— =A=>D=2-=——"7A=—x-—A
2 TETRT 2 3

Thus, by coupling 3.3.187 and 3.3.195, we obtain:

A9 2\ 1/2
"D _p(1-"
2 72

-1

v 2
De 2 = —x (p—i— %) = —X—’OA
c 3

40By setting u = 2v

(3.3.192)

(3.3.193)

(3.3.194)

(3.3.195)

(3.3.196)

(3.3.197)

(3.3.198)

41 B is an integration constant determined in such a way that the solution applied to the left-hand

side of the differential equation 3.3.191 cancels it out.
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Which enables us to deduce:

P 2p A
p+ === (3.3.199)
¢ 3 [A—B( ——;2)1/2]

However, if we consider that the pressure vanishes at the surface of the sphere at
r = R,*, we can deduce the following relation:

722

R2 1/2
A=3B (1 - —S> (3.3.200)

To determine B, we must match the interior and exterior metrics at the sphere’s
surface®®, which can be expressed as follows by considering 3.3.196:

2
, ) R\ 2GM
gz,)gt<RS) —e (Rs) — A — B (1 _ _> — gggt<Rs) = (1 — W) (33201)

f2

Thus, considering 3.3.200, we can deduce**:

2
R2 1/2 RQ 1/2 RQ
2 S S _ S _
B 3(1_722) _(_f_2) _(1—5):3—— (3.3.202)
From which we can obtain:
3 Rz 1/2
A= 3 (1 5 ) (3.3.203)

Then:

. 3 R\'? 1 r2\ /2
Gt () = [5 ( _ ﬁ) - (1 _ ﬁ) (3.3.204)

Hence, the Schwarzschild interior metric:

2
3 R? 1 r2 2 dr? :
~0-8)-3(-5)] e -5t v

(3.3.205)
This metric connects with the Schwarzschild exterior metric :
2GM 2 d7"2 .
ds? = (1 -, ) c?dz? — - r? (d§? + sin® 6d¢?) (3.3.206)

We can thus deduce, according to the classical theory of General Relativity, that
a particle of ordinary matter will undergo an attractive gravitational field due to the
effect of a distribution of positive masses.

12 A5 we will see later 8.2.9
43For r = R,, as seen in section 2.3.8
44 Considering 3.3.173, 3.3.169 et 6.1.2.
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Solution to the Second Field Equation 3.3.99

Let’s consider the impact of the presence of positive masses on the spacetime geometry
structured by h,,, from the second field equation 3.3.99 associated with the population
of negative masses. It is worth mentioning that we are entirely free to choose the inter-
action tensor T:(g’h), as this choice can stem from a Lagrangian derivation.

Thus, we have chosen the expression 3.3.108, which we can classically define as
follows:

v(g,h) __
TM g:h) _ (3.3.207)

co o
o o’ ©
ok © ©
s © © o

We can construct the left-hand side from the metric 3.3.116, which are the same as
for the previous case of positive masses?®. On the right-hand side of the second field
equation 3.3.99, the ratio of determinants will be considered almost unity insofar as we
perform this calculation within the Newtonian approximation.

lg| everrtsin®f
, /W =\ Sy ~ 1 (3.3.208)

Thus, we obtain:

Then:
/(1 N 1
Y
—_——— ] == 3.3.209
m-T) -5 =-w (3.3.200)
s (1 U 1 P
Y
T I 3.3.210
¢ (r2 + 7") r2 c? ( )
=1 —I\/ =12 —/ \/
5 (v 1780 N V= D
— — — = —x= 3.3.211
‘ ( > 1 1Ty > 2 ( )
I?’—i— /_\/ 5 P
— = — - = 3.3.212
T € X < 02> ( )
Hence:
-1 1 17/2 17/5\/ 17/ + 5\/ 17//
by
e - — 3.3.213
Tt Ty 2 ( )

45To simplify the notation, the superscripts (g) and (h) will not be taken into account throughout
the demonstration. Given that the source of the gravitational field in the second field equation 3.3.99
is created by a positive mass, we will retain the classical form of the variables p, ¢, and p on the
right-hand side. However, the left-hand side of this equation describes the geometry induced by this
source on the geodesics traveled by negative masses. Therefore, we will use the notations X, # on the
left-hand side to represent this physical phenomenon.
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To solve these differential equations, we can proceed in a manner similar to the
previous case by setting:

_ 2 7 _
o122 oy = (1 - e_’\> (3.3.214)
r
From which:
2m’ 1 /(1 X
(3.3.216)

However, in a manner similar to equation (14.18) of 1], we can write:

4G Gp [7 4
m = — 7T; p = m(r)=— P drr?dr = —§7rr3pc§2 =-—m(r)  (3.3.217)

@
The expression 3.3.210 thus allows us to obtain:

3
_m+%

y=9— < 3.3.218
Y r(r+2m) ( )
By deriving expression 3.3.210, we obtain:
P2 o (1 7N\ (=2, 7 ¥
_g—ﬁ_“ S+ +e F+7_ﬁ (3.3.219)
From which by simplification:
p/ 2 5 5\/ S\/D/ 2 ' 174
=2 SN T 3.3.220
2 (7"2+ r +7"3 r +7"2 ( )
p/ 9 675‘ V N 1 i o
Ve =2 9 (L — - — 4 — 3.3.221
2 r (27" 3 22 2r ( )
p, 92 6_5\ 1 17/2 5\/17/ 5\/ + 74 A 17/2 5\/17/
VR S > RS - -+ — 3.3.222
2 3 r (7"2 4 * 4 + 2r 2 + 4 + 4 ( )
By combining this result with expression 3.3.213, we can deduce:
p, A v / 3/
L = e (PN 3.3.223
c? ¢ 2T(V + ) ( )
Hence, the following expression by coupling with relation 3.3.212:
p/ 6—5\ L, o p o p/ i »
YN N A (__)_:>_:_(__) 3.3.224
2 r (7" +X) 2 X\PT2) 22 c? ( )
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Considering expression 3.3.218, we then arrive at the Tolman—Oppenheimer—Volkoff
(TOV) solution for the population of negative masses:

/ o 4w Gpr3

p m A < p >
—=—-——2L _|p—= 3.3.225
2 r(r + 2m) = ( )

The two solutions 3.3.182 and 3.3.225 tend towards the Euler equation in the Newto-
nian approximation. This also corresponds to the asymptotic satisfaction of the Bianchi
identities in the same context*6.

We will now establish the Schwarzschild interior metric associated with the popula-
tion of negative masses by applying the same calculation scheme as for the population
of positive masses, thus constituting the solution to the second field equation 3.3.99.

Indeed, taking into account relation (14.28) from [1] for r < R, and 3.3.214, we can
establish the following relation:

_ M7, 2
SR R - (3.3.226)
r T
The interior metric 3.3.116 can then be written as follows:
72 o(r) 7..02 dr? 27,2 2 2 2
ds” =e""da” — =7 d¢® — r*sin” 0d¢ (3.3.227)
=

Let us now determine the function 7(r) knowing that the density of the star is
assumed to be constant. We then obtain from 3.3.224:

27/ 2 2 !
V=T _ o = —M = —2In(pc — p)’ (3.3.228)
—pct+p pcs —p
Then:
]7 2 = _I p
—S =l —p)+C = Def=—y ( - —2) (3.3.229)
c
Considering 3.3.212, we can solve this equation as follows:
—/ 5\/ _ _ o — 17 N d 5\
vt e =—x (p — %) =De 2 = —rDe =0~ —(e) (3.3.230)
r c dr

Thus, from 3.3.226, we obtain:

r? d r? r? 2r
—/ =/

46The inequality r > 2m (where m is often replaced by (ié” to obtain a dimension of length, M

being the mass of the object and G the gravitational constant) indicates that we are sufficiently far
from the gravitational source for the effects of general relativity to be negligible. Indeed, at great

distances (r), the term 2%} becomes very small.

[NIN

—rDe™
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By setting:
v 7
ez =7(r) = 7 = e (3.3.232)
Hence, 3.3.231 allows us to obtain:
_ P r? 2r o - r? 2r
—rD =1V'ez (1 + 772) - ?2—262 =2 (1 + 72) - =27 (3.3.233)

7"2 T — 7"2 1/2
72 72 72

Hence, the general solution:

% fQD — T2 2
Yy=ez2=—+4+B|1+—= 3.3.235
¥ =e2 5 + ( + ﬁ) ( )
This allows us to obtain the temporal component of the metric tensor:
192
_ _ _ r2\ 2
Jgoo=¢€¢"=|A+B (1 + 72) (3.3.236)
T
By identification and considering 6.1.2, we obtain:
P2D _ A 2p87G 2p <
2 2T 3 X3 ( )
Thus, by coupling 3.3.230 and 3.3.235, we obtain:
0 7 /2171
_ P 20 - | 72D~ r2\ '
Dt = (p-2) = 2a| "2 (14 42
e 2 X 2 X3 2 + (~|—722 (3.3.238)
This enables us to deduce:
P 2p A
p— = =—7—— (3.3.239)
¢ arsaen)”

However, if we consider that the pressure vanishes at the surface of the sphere at
r = R, we can deduce the following relation:

B B R2 1/2
A=-3B (1 + ) (3.3.240)

7?2

4"By setting u = 2%
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To determine B, a matching of the interior and exterior metrics at the sphere’s
surface is required, which can be expressed as follows by considering 3.3.236:

2 1/272
L 2GM
A+B(1+%) ] :gg(’jt(RS):(1+ ¢ ) (3.3.241)

—int 7(Rs)
R,) = =
oo (Rs) =e Ryc?

Thus, taking into account expression 3.3.240, we can deduce:

2
(L RN R\ R? 1
—SBGﬁf§> +B(1+ ﬁ :(L+ﬁ>:=>3:§ (3.3.242)
r

f2

From which we can obtain:

2\ 1/2
A= _g (1 + R2> (3.3.243)
T
Then: )
p 3 Rg 1/2 1 7“2 1/2
oo () = [—5 (1 + 722) +3 (1 + 772) (3.3.244)

Hence, the Schwarzschild interior metric:

2
- 2 1 2 2 dr?
i [f( B)3) aawena
=

(3.3.245)
This metric must join the Schwarzschild exterior metric:
-9 2GM 2 dT2 .

ds” = (1 + 2 ) c?dz? — 13 7 - r? (d6” + sin® 6d¢?) (3.3.246)

We can deduce that a particle with negative mass will undergo a repulsive gravita-
tional field due to the effect of a distribution of positive masses.

Thus, the general form is given by:

2
2 2 2

n?_ |3 AN - o2 drt o a0

ds')” = [2 (1 8722> A dx 2 r? (df? + sin® 6d¢?)

(3.3.247)
With € = 1 to represent masses of the same sign that attract each other, and ¢ = —1
for masses of opposite signs that repel each other.

The paradigm of General Relativity (GR) can be summarized as follows:

The universe is a manifold My, equipped with a metric, solution to Einstein’s
field equation 2.3.1.
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The Janus model is an extension of GR:

The universe is a manifold My, equipped with two metrics, solutions of the
coupled field equations system 3.3.54 and 3.3.55.

Under these conditions, GR represents an approximation of this model, in regions
where negative mass can be neglected, for example in the vicinity of the Sun. This is ob-
viously an extremely ambitious proposition, which requires observational confirmations
to be credible.
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3.3.8 Compatibility of Field Equations Near the Dipole Re-
peller

Consider now the regions where negative masses dominate, for example, near the Dipole
Repeller. We can determine the solution for each of the field equations 3.3.102 and
3.3.103.

Solution to the First Field Equation 3.3.102

Let’s consider the impact of the presence of negative masses on the geometry of space-
time structured by g, from the first field equation 3.3.102 associated with the popula-
tion of positive masses. As we have already mentioned, we can choose the interaction
tensor T}/ (h9) as follows, insofar as this choice can stem from a Lagrangian derivation?®:

o O O

v(hg) _
Tvhe) = (3.3.248)

O O O
o O | o
O.\'gl"ﬁl
o | o O
%f@\

|
“.\')l’ﬁl

We can construct the left-hand sides from the metric 3.3.115, which are the same
as for the previous cases. On the right-hand side of the first field equation 3.3.102, the
ratio of the determinants will be considered nearly unitary.

|h] e’errt sin? 0 N

Thus, we obtain:

X 1
N AN R e
e (7’2 " ) > XP (3.3.250)
1 vV 1 D
—A .
e (ﬁ + ?) - ﬁ = —ch (33251)
1 AV 12 / /! =
(v VN V=N D
e (2 1 + T + o ) = X3 (3.3.252)
/ A/ =
LA S S <* . %) (3.3.253)
r c

48To simplify the notation, the superscripts (g) and (h) will not be taken into account throughout
the demonstration. Given that the source of the gravitational field from the first field equation 3.3.102
is created by a negative mass, we will use the notations p, ¢, and p on the right-hand side to represent
this physical phenomenon. However, the left-hand side of this equation describes the geometry induced
by this source on the geodesics traveled by positive masses. Therefore, we will retain the classical form
of the variables A and v on the left-hand side.
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Hence:

1 1 V/2 I// /\/ I// + )\/ y”
A
- == - — e 3.3.254
R R T ( )
To solve these differential equations, we can proceed in a manner similar to the
previous study:

2m(r) GM

—-A Y .
=1- == 2 =r(l— th = 3.3.255
e " m(r)=r(1—e?) with m 2 ( )
Hence:
om' 1 (1 X
(3.3.257)
However, in a manner similar to equation (14.18) of |1], we can write:
4rri@G Gp [T 4 G
m' = W; p = m(r) = c_f/o drridr = §7T7“3p§ (3.3.258)

The expression 3.3.251 coupled with the expression 3.3.255 thus allows us to obtain:

< (3.3.259)

/
B W N
v r(r+ 2m)

However, by proceeding with the derivation of the expression 3.3.251, we obtain:

]3/ o 2 RN 1 V/ ~A —2 I/// I//
NN Ety ) e m (3.3.260)
Therefore, by simplification:
ﬁ/ 2 Y )\/ )\/V/ 2 V// V/
—E = _ = - — 4= 3.3.261
2 B ° (7’2+ r +r3 r+r2 ( )
p/ 2 e—)\ Y Nyt 1 4 4
== [ = - 3.3.262
2 r (27’ 2 + r2 2 2r ( )
p/ 2 e—)\ 1 I//2 )\/1// )\/ _|_ I// V// I/IZ )\/V/
e =2 o [ -+ — 3.3.263
2 r (r2 Pt T > "3 T ( )
By combining this result with the expression 3.3.254, we can deduce:
P v, /
—E = e A 3.3.264
D ==+ ) (3:3.264)
Hence, the following expression by coupling with the relation 3.3.253:
ﬁ/ e—)\ ) , v - ]5 v ]7 4 - ]5
N R AV A (__)_:>_:_(__) 3.3.265
Xz ralCOS 2) 2 22\ a2 ( )
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Considering the expression 3.3.259, we then arrive at the Tolman—Oppenheimer—

Volkoff (TOV) solution for the population of positive masses*’:
- 47 Gpr3 _
P m— =i <, p >
—=———""<—"|(p—-= 3.3.266
2 r(r +2m) Pz ( )

We will now establish the Schwarzschild interior metric solution of the first field
equation 3.3.102.

Indeed, taking into account relation (14.28) from [1| for r < R and 3.3.255, we can
establish the following relation:

2m(r) r?

e =1~ — e =1+— (3.3.267)
T

r
The interior metric 3.3.115 can then be written as follows:

dr?

r2

1’,:2

ds® = "M da" — — r2d¢* — r?sin® 0d¢? (3.3.268)

Let’s now determine the function v(r), knowing that the density of the sphere is
constant by assumption. We then obtain from 3.3.224:

2p/ 2(pc* —p)’ PN
V=t o =270 olm(p—p) 3.3.269
E 7 P (pc” —p) ( )
Then:
Y —n(p@ - p)+C De s = —y(p-2L 3.3.270
—§—H(PC —p)+C = =X\ = (3.3.270)

Considering 3.3.253, we can solve this equation as follows:

v+ N D v v d
_ A (- L) = De % —rDe 2z =ve ™ — —(e7) (3.3.271
e x(p 52) e = rDe"2 =V'e dr(e)( )
Thus, from 3.3.267, we obtain:
v r? d r? r? 2r
However, by setting:
/
e2=(r) = 4 = %e% (3.3.273)
Hence, 3.3.272 allows us to obtain:
v 2 2r . 72 2r
—rD = Ve (1 + f_Q) et = 29/ (1 + f_2) -7 (3.3.274)

49The impact of the pressure gradient of negative masses on the geodesics traveled by ordinary
matter and photons of positive energy
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72D
5 -

A particular solution of this equation is v, =

And the general solution of the homogeneous equation is given by":

7’2 , 7’2 1/2

Hence, the general solution:

NI

v=e

AZD 2\ 2
- +B (1 + r—2> (3.3.276)
r

Thus, we obtain the temporal component of the metric tensor:

12
goo = € =

r2\ 2
A+ B <1 + ﬁ) (3.3.277)

By identification and considering 6.1.2, we obtain:

2D A 287G 2p
TT A= D=25= 3'07;—214 - —XgpA (3.3.278)
Thus, by coupling 3.3.271 and 3.3.276, we obtain:
-1
3 p 25 | #2D 2\ /2
De % = —y (* - %) — _XEpA TT +B <1 + %) (3.3.279)
Which allows us to deduce:
p 2p A
p— % = (3.3.280)

SlarB+5)”

However, if we consider that the pressure vanishes at the surface of the sphere at
r = R, we can deduce the following relation:

R2 1/2
A=—-3B (1 + ) (3.3.281)

rf.Z

To determine B, it is necessary to match the interior and exterior metrics at the
surface of the sphere, which can be translated as follows, considering 3.3.277:

o 1/272
2GM
A+B(1+%) ] = g5'(Rs) = (1+ G ) (3.3.282)

int v(Rs) _
R,) = =
goo (Bs) = e R.C2

0By setting u = 2
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Thus, taking into account the expression 3.3.281, we can deduce:

2
R\ R\ R’ 1
-3B (1 + —;) + B (1 + S) = (1 + —;) = B= 5 (3.3.283)
r r

,’22

From which we can obtain:

3 R2 1/2
A= —3 (1 + A;) (3.3.284)
T
Then: ,
go0 (1) = [—5 <1 T ) t3 (1 + 75) (3.3.285)

Hence, the Schwarzschild interior metric solution:

2
3 R% 1 r2 02 dr? 9 /1 .o 5
:[5 <1+?2—2>—5 (1+§> dx —1+;_§—r (d@ + sin qub)

(3.3.286)
This metric matches the Schwarzschild exterior metric:
2GM 2 d’f’2 .
ds? = (1 + 2 ) Ada” — T3 20 r® (d6” + sin® 6d¢?) (3.3.287)

We can deduce that a particle of ordinary matter will undergo a repulsive gravita-
tional field due to the effect of a distribution of negative masses.

Solution of the Second Field Equation 3.3.103

Here, the source of the gravitational field of the second field equation 3.3.103 is created
by a negative mass. Therefore, we will adopt the same form of the variables p, ¢, and
p on the right-hand side. The left-hand side of this equation, describing the geometry
induced by this source on the geodesics traveled by negative masses, we will also use
the notations \, 7 on the left-hand side to represent this physical phenomenon.

Let’s examine the classic construction of the interior metric starting from the ex-
pression of the energy-momentum tensor T:(h’h) of the second field equation 3.3.103
associated with the population of negative masses that we are perfectly free to define
in the following way:

v(h,h) __
k) — (3.3.288)

o o o
o O O
oY o ©
Vs © © ©
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Thus, we can set the following differential equations:

(1 MY 1
2 _
— ) == 3.3.289
‘ (7"2 r ) 2 = AP ( )
(1 Vv 1 p
My Yo P
e (r2 + r) = X3 (3.3.290)
-/ - = -2 - 3 —
Y A TS N )
e < 5 T Tt o = X3 (3.3.291)
S _
VA (p + _%) (3.3.292)
r c
Hence:
(1 XN 1 N 775 7 7y Y
_A —_—— — _—— = _A _— — . -2
e <T2 T) S = [2 Tt 27"] (3.3.293)
-1 1 12 2\ YAV yi
PR AN L (3.3.204)

r r2 4 4 2r 2

To solve these differential equations, we can proceed in a manner similar to expres-
sion (14.15) from reference [1] in chapter 14 by setting:

o120 oy = (1 —ﬁ) (3.3.295)

Considering 3.3.289, if we derive this expression, we obtain:

o = (1 - e_’_\> 4rNe (3.3.296)
2m’  —1+4e? —rNe™ 1 {1 N
i 7“2 — St (52 (3.3.297)
_ r’xp  A4Amr*G
= — = D 3.3.298
m 5 =P ( )
In a manner similar to equation (14.18) from [1], we can deduce:
_ Gp [T 4 4 G
m(r) = ?/0 dmredr = 3P (3.3.299)
The expression 3.3.290 coupled with the expression 3.3.295 allows us to obtain:
— 2 —
P S R W Gt} 3.3.300
. r(r—2m)( Xzt ) r(r — 2m) (8:3.300)

Hence: iy
_ m+ ==
Vo=2— (3.3.301)
r(r —2m)
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However, by deriving the expression 3.3.290, we obtain:

P2 (1 v (=2 v v
5= ~ Ve A(ﬂ*? 4+ St (3.3.302)

Therefore, by simplification:

AN U 7
G =5-e (ﬁ* : +___+_2 (3.3.303)
P2 N D U7 BV
— _:__2_ _ - — 4+ — 3.3.304
2 o r (2r+ 2 +r2 2+2 ( )
N+

_ 3 -2 5, - =2 -
il 2 e [ 1 v N/ v v N/
P 5 v 3.3.305
¢z T (7’2 4 * 4 + 2r 2 + 4 + 4 ( )

By combining this result with expression 3.3.294, we can deduce:

S 7
x5 = —e (7 + ) (3.3.306)

Hence, the following expression by coupling with relation 3.3.292:

e (v ﬁ) % P VoD
WEo el = ——:>—:——( —) 3.3.307
2 SN =Pt ) 5 2~ 2\ a ( )
Considering expression 3.3.301, we can deduce the classical Tolman—Oppenheimer—
Volkoff (TOV) equation:

4
m + 7TGpT

P <, ﬁ)
—=-—"°<_ = 3.3.308
2 r(r— 2m) Pt 2 ( )
The two solutions 3.3.266 and 3.3.308 tend towards the Euler equation in the New-
tonian approximation. The compatibility of the two field equations is ensured asymp-

totically.

The form of the interaction tensor 3.3.248 and the energy-momentum tensor 3.3.288
satisfies the Bianchi conditions. This would obviously not be the case if the negative
mass were to fall outside of this framework. For that, there would need to exist neutron
stars of negative mass. However, the characteristic time of evolution of conglomerates
of negative mass, their "cooling time", exceeds the age of the universe. These spheroidal
conglomerates cannot evolve, so the content of this negative spacetime will be limited
to a mixture of negative mass anti-hydrogen and anti-helium. Since nucleosynthesis
cannot occur, there can be no anti-galaxies or anti-stars, regardless of their mass. Con-
sequently, there cannot exist anti-neutron stars.

Moreover, in the case where this negative spacetime would generate hyperdense stars
through an as yet unknown mechanism, it would then be necessary to reconsider the
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form of these tensors. However, the current configuration satisfies all currently available
and potentially available observational data.

Photons of positive energy emitted by sources located behind the Dipole Repulsor
will experience a significant decrease in their magnitude due to the negative gravita-
tional lensing effect. These photons then freely traverse this vast void. The effect will
be maximal when the photons brush past this spheroidal conglomerate, where the en-
tirety of the mass must be taken into account. However, it will be negligible when these
photons pass through the central neighborhood (Figure 3.16).

Thus, we predict that when a map is established by the JWST telescope, the in-
visible mass will manifest its presence by a brightness attenuation, not over the entire
disk, but in a ring.

Let’s now determine the explicit form of the interior metric.

Taking into account relation (14.28) from [1] for r < R, we can establish one of the
terms of the metric from 3.3.295:

Y 2m(r) 8 G s r?
A _ 2~ X
e t=1- . —1—§7Trp?:>e —1—§ (3.3.309)
The interior metric 3.3.116 can then be written as follows:
7.2 o(r) 7.,.02 dr? 23 12 2 .2 2
ds” = e"\"da”" — — — r°d¢” — r”sin” 6d¢ (3.3.310)
=

Let’s now determine the function 7(r) knowing that the density of the sphere is
constant by assumption. Then, according to 3.3.307, we obtain:

_ 29 B 2582 + 5
V= — ﬂp - = U= —M = —2In(pc* + p)’ (3.3.311)
pet +p pct+p
Then:
v _ 5 TG D
L= +p)+C = Det =D (p + %) = —x (p+ %) (3.3.312)

Considering 3.3.292, we can solve this equation as follows:

I;, + 5\/ Y D — U — o _ < _ - _ — —
- e M=y (ﬁ+ C%) =-—De 2 = rDe?=ve Net=ver——(e?)

Thus, according to 3.3.309, we obtain:
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Now, by setting:

And the general solution of the homogeneous equation is given by °2:

r? r _ P2\ 2
—y _ _

The general solution is therefore given by:

Thus, we obtain the temporal component of the metric tensor:

2\ 3717
A_B<1_f_2) ]
r

By identification and considering 6.1.2, we obtain:

MP2D A 2p87G 20 -
—— =A=D=2-="""A=_y="A
2 = 73 2 X3

Thus, by coupling 3.3.313 and 3.3.318, we obtain:

- v
goo = € =

[SIN]

Ao _ P
De 2 = —x (p—i—cg) =—x—A4A

Which allows us to deduce:

p+§2:€[A—B(1—;—2)1/2]

(3.3.315)

(3.3.316)

(3.3.317)

(3.3.318)

(3.3.319)

(3.3.320)

(3.3.321)

(3.3.322)

Now, if we consider that the pressure vanishes at the surface of the sphere at r = Ry,

we can deduce the following relation:

_ oy 1/2
A:33<1_ng>
r

(3.3.323)

5Tndeed, this solution applied to the right-hand side of equation 3.3.316 yields the left-hand side.

52By setting 4 = 27

129



CHAPTER 3. JANUS COSMOLOGICAL MODEL

To determine B, we need to match the interior and exterior metrics at the surface
of the sphere, which can be translated as follows, considering 3.3.319:

_ o\ 1/2 _
it B\ _ (R _ RS o 2G M
oo (Rs) = e ) = |A-B (1 S ) = Joo (Rs) = (1 T R.& ) (3.3.324)

Thus, considering 3.3.323, we can deduce:

_ o 1/2 _ oy 17272 _

D, R32 Rs Rs — 1

B? 3(1— A2> —<1— A2> :(1— A2>:>B:§ (3.3.325)
T T T

From which we can obtain:

3 22\
A= (1— . ) (3.3.326)

2 72
Then:
r2 1/2
1-— §> (3.3.327)
dr? 2 2 . 9 2
s =T (d9 + sin «9d(b)
T2
(3.3.328)
This metric matches the exterior Schwarzschild metric:
-9 QGM _ 2 d7“2 .
ds” = (1 -, ) Zda" — [ am r? (df? + sin® 6d¢?) (3.3.329)
é2r

We can deduce that a particle of negative mass will undergo an attractive gravita-
tional field due to the effect of a distribution of negative masses.
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November 25, 2024

The following chapter describes work that originated in 1972, when Jean-
Pierre Petit published a paper at the Paris Academy of Sciences in which
equation-Poisson equation pair. Assuming that the velocity ellipsoid has
its major axis directed towards the center of the system, he drew two
conclusions. The first is that, as the radial coordinate r varies, this major
axis remains constant, while the transverse axes tend towards zero at
infinity. He also obtained a range of velocity curves and interrupted this
work as it stood, since at the time (over 50 years ago) the general shape of
these curves was not yet known or stabilized. He then resumed this non-
eventually abandoned it, concentrating his efforts on building the
geometric structure and relativistic field equations of his cosmological
model, to which he then gave the name Janus Model.

But in 2016 Gilles d'Agostini, in a final essay, takes into account an
additional, yet logical symmetry, that Petit had not considered, namely that
the macroscopic velocity vector is tangent to a circle of axis OZ. This
assumption then constrains the solution by producing a velocity step, at a
distance from the center, which is then consistent with observational data.
An article by Petit and d'Agostini has recently been sent to a peer-reviewed
journal. At the time of writing, there has been no feedback from this
journal. An article by Petit and Agostini was recently sent to a peer-
reviewed journal. At the time of writing, there has been no feedback from
this journal.
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Chapter 4

Modeling Galactic Dynamics

It has been possible to construct a model of a galaxy with spherical symmetry sur-
rounded by a halo of negative masses. This has a confining effect that explains a
number of phenomena generally attributed to dark matter in the context of the Stan-
dard Model, notably its deceleration resulting from its interaction through dynamic
friction with its negative mass environment, as well as its spiral structure. This model
also explains why stars in the outer regions of galaxies move at higher speeds than
those predicted by the gravity of visible matter alone. Without negative masses, the
laws of Newtonian gravity would suggest that these stars should move more slowly,
being further from the galaxy’s massive center. However, observations show that these
stars have relatively high speeds, suggesting the additional anti-gravitational influence
of an invisible mass, namely negative mass matter.

Elliptical galaxies constitute a significant proportion of the mass of the visible Uni-
verse. They are primarily composed of old stars, characterized by a high velocity
dispersion and distributed in the disk® as well as in the galactic halo, and contain very
little gas®. In contrast, spiral galaxies contain about 10% of their mass in the form of
interstellar gas. This gas is primarily concentrated around the diametral plane, forming
a very flattened disk. Its distribution is not uniform, but shows condensations, the most
significant of which contribute to the galaxy’s spiral structure. In these galaxies, young
stars, with low velocity dispersion and concentrated near the plane of symmetry, are
primarily found in the spiral arms.

Globular clusters, on the other hand, are systems with spherical symmetry, virtually
devoid of gas.

!The disk refers to a flat and extended structure, distinct from the denser central regions of galaxies,
called bulges, and from the external galactic halos, which contain older stars and less gas.

2Elliptical galaxies are distinguished by their spheroidal or elliptical shape without distinct spiral
arms. They generally have a homogeneous distribution of old stars and little ongoing star formation,
due to the scarcity of gas necessary for the birth of new stars. These galaxies are often found in densely
populated environments like the centers of galaxy clusters.
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Therefore, to study the dynamics of stellar systems, such as galaxies or globular
clusters, it is reasonable as a first approximation to neglect the presence of gas and focus
solely on the population of old stars, with high velocity dispersion. It is noteworthy
that on the scale of a galactic rotation, these systems are virtually collisionless and can
be described by the Viasov equation.

4.1 The Vlasov Equation and Its Components

Self-gravitating stellar systems had already been modeled in 1942 by S. Chandrasekhar
[14] using a Maxwell-Boltzmann type solution of the Viasov equation, coupled with the
Poisson equation. The stars in galaxies form non-collisional ensembles?.

Indeed, the Vlasov equation is a fundamental equation in plasma physics and stellar
dynamics that describes the temporal evolution of the distribution function f(7,v,t) in
phase space for a system of particles under the influence of a conservative force field.
This equation helps scientists understand how groups of particles, like stars in a galaxy
or particles in a plasma, move and behave over time.

The distribution function mentioned in this equation represents the distribution of
particles in a space that accounts for both their position and velocity. This phase space
is a conceptual tool that allows for visualizing and calculating the behavior of a large
number of particles simultaneously.

The Vlasov equation is given by:

g—{+ﬁ-v,7f—w\v-vaf=0 (4.1.1)

where:

e f(7,¥,t) is the distribution function representing the number density of particles
in phase space at a position 7, with a velocity v, at time t.

° 68—{ is the partial derivative of the distribution function with respect to time, rep-
resenting the change in the distribution function over time.

3When the distribution function evolves collisionlessly according to the Vlasov equation, it means
that it describes the motion of particles considering that they do not directly collide with each other.
This is a useful approximation for studying systems like galaxies, where stars are so far apart from one
another that they interact primarily through gravity and not through direct collisions.
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e -V;f represents the convective derivative* in position space, which describes how
the distribution function changes due to the motion of particles through space at
velocity v.

e V(7 t) is the scalar potential field, which depends on position and time, and its
negative gradient —V U gives the force per unit mass acting on the particles.

o —V:U.V;f is the force term, representing how the distribution function changes
due to forces acting on the particles, altering their velocities.

The equation asserts that the distribution function is constant along the particle
trajectories in the absence of collisions, which is known as Liouville’s theorem. This
property is crucial for the conservation of phase space density and underlies the colli-
sionless dynamics described by the Vlasov equation.

NB:

e In a physical context, the term —V ¥ represents the force acting on a particle. For
a scalar potential W(7, ¢), the negative gradient with respect to position, written as
—V 7V, gives us the force vector F. This relationship is a cornerstone of classical
mechanics and is described by the equation:

F=—V¥ (4.1.2)
where:
— F is the force vector experienced by a particle,
— V7 denotes the gradient with respect to position,

— W(7,t) is the scalar potential field that depends on the position 7 and time
t.

The negative sign indicates that the force acts in the direction of decreasing po-
tential energy, aligning with the physical principle that particles tend to move
from regions of high potential energy to regions of low potential energy.

4The convective derivative describes how a quantity (like density, velocity, temperature, etc.)
changes following the general movement of a fluid system. It takes into account both the variation of
the quantity over time and the variation due to the movement of the fluid.
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e The Maxwell-Boltzmann Distribution, named after James Clerk Maxwell
and Ludwig Boltzmann, is a fundamental statistical law in physics that plays a
crucial role in describing the distribution of particle velocities in a gas at a specific
temperature. When a gas is heated, energy is imparted to its particles, causing
them to move at different velocities. This distribution mathematically character-
izes how these velocities are distributed among the particles in an equilibrium gas,
meaning that the overall velocity distribution remains constant over time, even
though individual particles may exchange energy during collisions.

To illustrate this concept, imagine a room filled with bouncing balls, each rep-
resenting a particle in the gas. These balls collide with each other, sometimes
changing speeds. Some may slow down, while others speed up. Over time, you
would observe that some balls move slowly, most at moderate speeds, and a few
move very quickly. The Maxwell velocity distribution is a mathematical model
that predicts the proportion of particles moving at each speed in the gas.

The distribution is expressed by the probability density function f(v), where v is
the velocity of a particle, m is the mass of a particle, k is the Boltzmann constant,
T is the temperature of the gas, and e is the base of the natural logarithm. The
formula for f(v) is given by:

3
o m 2 2 _'gwi
fv) = <27rkT) Ay e 2% (4.1.3)

Understanding the Maxwell-Boltzmann distribution is essential not only for grasp-
ing the behavior of gases but also forms the basis of the kinetic theory of gases,
which helps scientists predict the properties of gases such as diffusion, viscosity,
and thermal conductivity.

4.2 The Vlasov-Poisson System

The Vlasov-Poisson system describes the evolution of a self-gravitating system in the
absence of collisions. As we have mentioned, the Vlasov equation governs the evolution
of the distribution function f(7,7,t) in phase space, and the Poisson equation relates
the gravitational potential ¥ to the mass density p:

AV = 47Gp (4.2.1)

where p is related to the distribution function by p(7,t) = [ f(7, ¥, t) d*v, which is
the mass density obtained by integrating the distribution function over all velocities.
This system of equations is fundamental in the study of the dynamics of stellar systems
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and galaxies.

NB: The connection between the Poisson equation and the Vlasov equation is made
through the gravitational potential ¥. In a system composed of many particles, such
as stars in a galaxy or molecules in a gas, the Vlasov equation governs the evolution
of the particle distribution function in phase space, and the Poisson equation relates
the collective effect of these particles’ mass distribution to the potential field in which
they move. When the Vlasov equation is used to describe a self-gravitating system of
particles, like the stars in a galaxy, it is often coupled with the Poisson equation. The
gravitational potential that appears in the Vlasov equation is the same potential that
satisfies the Poisson equation. In this coupled system, the Poisson equation provides
the field equation that determines the gravitational potential ¥ resulting from the mass
distribution p, and the Vlasov equation uses this potential to determine how the dis-
tribution function evolves over time.

In the context of astrophysics, when describing the motion of particles in a system,
it is common to distinguish between the average velocity of the particles and their in-
dividual or residual velocities. The average velocity, denoted ¢, = (c), is the mean
velocity of all the particles in the system. The residual velocity C, also known as pecu-
liar velocity (relative or proper velocity) of a particle, is then defined as its individual
velocity (or absolute velocity) ¢ minus this average velocity®:

C=c—c, (4.2.2)

This residual velocity represents the deviation of a particle’s velocity from the aver-
age flow and can be associated with the concept of thermal velocity in fluid mechanics,
which is the random motion of particles in a fluid. Indeed, in a system like a galaxy
or a fluid, the particles (such as stars or molecules) move around. The average velocity
is the mean velocity of all these particles. However, each particle has its own velocity,
which might be different from this average. The residual velocity of a particle is the
difference between its individual velocity and the average velocity of the system. It’s
like measuring how much faster or slower a particle’s motion is compared to the average
movement in the system.

Furthermore, an operator D is defined that combines the time derivative with con-
vection by the mean flow (Page 48 - Section 3.12 of [16]) :

D _9
Dt Ot
0

where £ is the temporal partial derivative, and ¢, - V, denotes the advection operator

acting on a scalar or vector field with respect to the mean velocity (Page 9 - Section

¢ Ve (4.2.3)

5We will now use a bold letter to define a vector and a regular letter to denote a scalar. Additionally,
we will use ¢ instead of v to define the velocity according to [16]
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1.33 of [16]).

This operator D is used to describe the change of a quantity both in terms of time
and as it is transported by the mean flow. Indeed, this operator is a way of accounting
for two things at once: how particles change over time (that’s the % part) and how they
move with the flow or the average movement of the system (that’s the c, - V, part). ¢,
is the average velocity, and V. is a mathematical operator that measures how particles
change from one place to another. By combining these two, the operator D helps us
understand how a quantity (like density or pressure) changes not only over time but
also as it moves with the general flow of the system.

It is particularly useful in the study of fluid dynamics and plasma physics, where it
can simplify the equations governing the system’s behavior by focusing on fluctuations
rather than the overall movement.

We can then consider two Vlasov equations, written in terms of residual velocities,
coupled by the Poisson equation. These equations are written:

Df Dc, ' B

E + C- V,f - (VF\I/ + Dt > : ch — ch -C: V,-CO =0 (424)
DS v (v + 25 Vef—Vef C:Vie, = 0 (4.2.5)
Dy = LT\ Ty ) el T Vel s = =

where, I remind you, D is the convective derivative with respect to the mean flow,
c, is the average velocity, C is the residual velocity or the proper thermal agitation
velocity of a particle, f is the distribution function, and W is the gravitational potential.

The terms Vg f - C and V,c, are called dyadic products®, which are tensor opera-
tions resulting in matrices (in this context, called dyadic matrices according to [16] and
[73]). The term V¢ f-C : V,c, represents the scalar product of two dyads defined ([16]
page 16 eq. 1.31.4 and [73] section 3.3) by the notation A: B = A!B;.

NB: A : B represents the scalar (dot) product of two matrices or dyads, where each
element of the first matrix A is multiplied by the corresponding element of the second
matrix B, and the products are summed:

3

i=1 j=1

6These are complex mathematical operations that transform velocities and other quantities into
matrices (a type of mathematical table). These matrices are used to describe the relationships between
different velocities and to understand how they change together.
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Now, we know from 4.2.3 that:

Df of of
5 = 55+ o = Vil F 0 Vif (4.2.7)

Then,

Dln(f) _1Df _9ln(f)  _9ln(f)
Dt — fDt Ot ° Or

=V:In(f) + ¢, VyIn(f) (4.2.8)

Thus, the equations 4.2.4 and 4.2.5 become:

Dc,
Dt

Viln(f)+c, Veln(f)+C-V,In(f)— (Vr\ll + >-Vc In(f)—Veln(f)-C: Vee, =0

(4.2.9)

Vin(f) +c¢,- Veln(f)

+C-V,In(f)— (Vr\lf + Dco) -Veln(f)—Veln(f)-C: V,c

=0
m o
(4.2.10)

To search for solutions to these equations, the principle is as follows:
1. We start by taking a distribution f as a function of velocities and time.
2. Then, we substitute it into the Vlasov equation.

3. We group the terms according to the monomials of velocity components, which
generates as many individual equations.

4.3 Modeling a Galaxy with an Ellipsoidal Velocity
Distribution

The velocity distribution in a stellar system can often be described by a Maxwell-
Boltzmann distribution function. The natural logarithm of this distribution function f
is expressed in terms of the residual velocity components C,, C,, C,, which in the case
of the Maxwell-Boltzmann distribution leads to a spherical polynomial.

If the distribution is not isotropic’, which is often the case, for example, in the
solar system around the Sun, the velocity distribution can take an ellipsoidal shape, as
shown in Figure 4.1. Indeed, the velocity ellipsoid represents a velocity space where the
distribution is more ellipsoidal than spherical, indicating an anisotropic distribution®.

"The term isotropic refers to a property being identical in all directions. An isotropic velocity
distribution would mean that the velocities of objects in space are evenly distributed in all directions.
8The velocities of stars or particles within a galaxy are not distributed uniformly in all directions
(isotropic), but rather anisotropically, with direction preferences that can be described by an ellipsoid
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The distribution of stellar residual velocities around the Sun is not isotropic but
corresponds to a velocity ellipsoid where one of the axes is roughly double the other
two. Figure 4.1 represents the velocity ellipsoid of a galaxy rotating around the axis
0Z?. A model of a galaxy (or globular cluster) has been constructed corresponding to
this figure.

Figure 4.1: Velocity ellipsoid with cylindrical symmetry.

An ellipsoidal distribution is chosen where the velocities form an ellipsoid defined
by a logarithmic function of the quadratic velocity distribution:

In(f) = In(B) + a,C} + a,C. + a,C (4.3.1)

These velocity terms are quadratic because they are proportional to the square of
the velocity components in each respective direction:

In a spherical galaxy, the distribution of positions exhibits spherical symmetry. However, if the
galaxy rotates around the axis OZ, like a spiral galaxy, then the velocity distribution can no longer
be spherically symmetrical. In reality, the average agitation speed of the matter composing the galaxy
becomes perpendicular to the rotation axis. A cylindrical symmetry distribution is then more appro-
priate to represent this scenario. We seek a velocity distribution where the average speed is primarily
tangential to the galaxy’s plane of rotation (with a possible radial component). To achieve this, we
decompose the agitation speed by introducing radial and tangential components, with three unknowns
(H, a, and «) that we aim to determine using the Vlasov equation.
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e C, is the unit vector in the direction of r, and a, is the velocity component C
along this axis.

e C, is the unit vector in the direction perpendicular to both r and Z, and a, is
the velocity component C along this axis.

e C, is the unit vector in the direction perpendicular to the two previous directions,
thus forming a trihedron. a, is the velocity component C along this axis.

Within the framework of an ellipsoidal velocity distribution, 4.3.1 can also be written
in the following form:

n(f) = In(B) — ——C? 4+ a(C - 1)* + a[C - (k x r)]? (4.3.2)

where :

k is the unit vector along 07 around which the galaxy rotates'®

R is the unit vector along the radial axis collinear to r given by the following

relation: R = %

[l

e P is the unit vector in the direction perpendicular to r and Z given by the
following relation: P = ﬁ”

Q is the unit vector perpendicular to the two previous vectors given by the fol-

lowing relation: Q = %

B, H, a, and «a depend a priori on time and space.

However, we can make the following assumptions:

1. We will consider a steady-state regime, which means there is no implicit depen-
dence on time.

2. We will consider a solution exhibiting symmetry around the axis 07 , character-
ized by rotation around this axis with an average tangential speed.

0
10Unit vector k = [0] along the Z axis in the frame (X,Y, Z).
1
The cross product generates a vector orthogonal to two given vectors. Then, the normalization of
this resultant vector is performed by dividing it by its own norm.
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This translates into the following simplifications:

8ln(f)7
ot
Dco_aco+ _%_c'aco
Dt ot " ar % or
aln(f)_
C, - o =0

(4.3.3)

(4.3.4)

(4.3.5)

The Vlasov equations 4.2.9 and 4.2.10 then reduce to the following expressions:

C-V.In(f) - (vr\y te,- %) Veln(f) —Veln(f)-C:Vie,=0  (4.3.6)
C - V.n(f) — (vrqf +c,- %) - Veln(f) — Veln(f)
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4.3.1 Attempts to Develop Solutions for the First Vlasov Equa-
tion

Let’s try to establish a solution to the Vlasov equation 4.3.6. Indeed, this expression
contains three terms. The first given by C - V., In(f) will yield solutions of velocity of
order three and one. The second (Vr\lf +c, - a;r") - Ve ln(f) will allow us to obtain
solutions of velocity of order one and the last V¢ In(f) - C: V¢, of order two.

Third-Order Solution Solution for the Elliptical Velocity Distribution Func-
tion

The first term of the Vlasov equation 4.3.6 must satisfy the following relation:

C-V,.In(f)=0 (4.3.8)
However, to further simplify the calculations, we can set:
Y
co,=wkxr)=w| z (4.3.9)
0
(9c0 8(1{ X I')
— =wW—— 4.3.1
or 7 or (4.:3.10)
Then :
C:-(kxr)=—-yC, +zC, (4.3.11)
yQCx - xyCy
[C-(k x1)](k x1) = | —2yC, + 2°C, (4.3.12)
0

Thus, introducing equation 4.3.2 into 4.3.8 allows us to obtain the following relation,
retaining only the terms of order three:

——CQC % < 1)+2a(C r)-C-C+C- %(C r)’+C- g—r[ “(kx1)*=0 (4.3.13)

We can express it in terms of the components C,, C,, C; of the residual velocity,
collinear to the trihedron formed by the axes (X,Y,Z), in order to take advantage of

the symmetry around the axis 07 and then group the monomials:

0 (1 J (1 0 (1
L 2 2 I I el =
o (C +C, +C)(Og‘ax (H>+Cyay (H)+Czé?z (H)>

+2a (C; 4 C2 + C2) (Cy + yCy + 2C.)
(4.3.14)
Ox Yoy 70z

1oJe" Oa 1oJe"
+(Cx%+0ya—y+0 6z>( yCy +2C,)° =0

+ (C a ¢ 90, o0 )(sz—l—yCy—l—zCz)Q
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Thus, we obtain 45 terms which, when grouped by monomials, allow us to deduce
the following ten partial differential equations:

C?C, -

x

C*C, -

Y

z

z

C,C,C. :

c?C, -

CQCy :

-l E) a4 200 4 200 (43.15)
_;”_ka% %) +2ay+y2g_z+x2g_z —0 (4.3.16)
—%% %) +2az+22% =0 (4.3.17)
—%% %) +2ay + %4—2333/%—#?;22—3—29@2—? =0 (43.18)
_%% %) + 2ax +y a—+2xyg—z+x23—z—2xyg—z =0 (4.3.19)
—%% %) + 2az + xQ% + 2332% + yzg_i =0 (4.3.20)
_%% %) 420 4+ y2% n 2yzg—z + xQZ—j — 0 (4.3.21)
_%% %) T 2ax + 2250 42 z% -0 (4.3.22)
—%a% %) + 2ay + ng—Z + 2yzg =0 (4.3.23)
2yz% + 29522—; + 2xy% — 21:yg—: =0 (4.3.24)

Assuming that a and a do not depend on r, we obtain:

3 — 2 — 2 . __m _a _1 —

C,=CC, =00, ok B <H> +2ax =0 (4.3.25)
3 = 2 = 2 . __m _a _1 f—

Oy = 020, = C1C,: g o ( > +2ay =0 (4.3.26)
3 — 2 — 2 . __m _8 _1 —

C:=CC.=C,C.: TP (H) +2az =0 (4.3.27)

However, we know that the radius of the ellipsoid on its plane of rotation defined
according to the frame (X,Y) around the axis Z is given by!'%:

op*

p2:$2+y2:> ox

0y

12Knowing that r2 = p? + 22 where p? = 22 + ¢
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We then obtain in terms of p:

o (1) 2k 1 2% )
o (ﬁ) =T E T Rt hE) (4:3.29)
o (1\ 2 1 2% , )
0.2 (E) =Wt T R (4.3.30)

The function f; depends only on 22, therefore, if we differentiate (4.3.29) with
respect to z2, we obtain 4.3.30, which is:

o (2k n) O o 0O 1Y) 2k
9.2 (ECLP + hi(z )) = azgfl(z ) = 022 (H) Y (4.3.31)
Then:
2 2k,
£ = a4k, (4.3.32)
m
Consequently:
% = iz_kQPZ - %GZQ + k- (4.3.33)

However, by setting r = 0 (p* = 0 and 2z = 0), we have + = k. which we decide to
associate with 712,

Thus, the coherent solution that satisfies these equations is written in the following

form:
1 1 2kaTy
—_— =14+ — 4.3.34
H T, ( T ) (4:3.34)
Let us set:

r2 (4.3.35)

2CL1€TO 1 —+ %

To

However, we know that the component of any vector C along one of the axes of the
frame is the orthogonal projection, which is obtained by performing the dot product
of the vector C with the unit vector of the respective axis. Thus, we can express the

components of 4.3.1 in the following way:

c,—C.rR-c. L _CT (4.3.36)
L I
kxr C-(kxr)
C,=C-P=C- - (4.3.37)
. [kxrl| |k xr|
C,=C-C,-C, (4.3.38)

13T, being a function of time

143



CHAPTER 4. MODELING GALACTIC DYNAMICS

And taking into account the fact that!?:
|k xr|?=(kxr) - (kxr)=(k-k)(r-r)— (k-1)(k-r)=1>—2>=p* (4.3.39)
After introduction into 4.3.1 and grouping the terms, we obtain:
(a, — aq) (a, — a,)
In(f) = In(B) + Tq(c )’ + %[C - (k x 1)]* + q,C? (4.3.40)
Thus, by identification with 4.3.2, we can deduce that:
m
- 4.3.41
Y= okl (43.41)
(ar — aqy) m 2
a = 7’—2 a, = _ﬂ + ar (4342)
(ap — ag) m 2
a= P Uy = —5pr +ap (4.3.43)
If we also set: m
2 — 4.3.44
pO QQkTO ( )
Then, we obtain:
m
=— 4.3.4
=Tk, (4:3.45)
o (14T (4.3.46)
P2k, 3 PR o
2
= — 14+ — 4.3.47
%= o T < - rg> (4.3.47)

We can deduce the logarithmic function of the quadratic velocity distribution:

2 2 2
B (—ﬁ{c%cg (1+:—2—Z—2)+C§ (1+:—2)D
f = foe i i

with:

m
27T]€T0

o (s

M Lagrange’s identity is a well-known rel

la x|

where a and b are vectors.

(4.3.48)

3 1
2 2 2

1
r 2
S
T

0

2
2
70

/02

)

~ (4.3.49)

Po

(

ation in mathematics that states:

? = [al*|b]* - (a- b)?
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Second-Order Solution for Determining Angular and Circular Velocities

The last term of the Vlasov equation 4.3.6 corresponding to V¢ In(f)-C : V¢, involves
the double product of

Veln(f) - C: Ve, = Tr(AB) = 0 (4.3.50)

with:

A=Vcin(f)-C
B=V.c,

Calculating B:

Based on 4.3.9, we can deduce:

6001 800y

0 —ye gw gy
ox ox ox ox
B:?: fooe Suo 0| = | —yG—w  afr 0 (4.3.51)
r Cox Coy — a—w a—w
aaz aag 0 Ya: = 0
Calculating A:
A=Vchn(f)-C (4.3.52)
Based on 4.3.2, we can deduce:
A:—kﬁHc.cHa(c.r).r-c+2a[c.(kxr)].(er).c (4.3.53)
=A;+As+ As (4.3.54)
Let’s calculate each term:
m c: c,c, C.C,
A1 == _k_H Cny Cj CyCZ 5 (4355)
c.c, c.,c, C?
zCy 2Cy 2C,
Ay =2a(2xCy +yCy+ 2C,) | yCo» yC, yC. |, (4.3.56)
2C, 20, z2C,
y2cm - $ycy
Az =2a | —zyC, +2°C, | (C. C, C.) (4.3.57)
0

y?C,Cp — xyCyCy yQCxC’y — xyCyC, y2C,C, — xyC,C,
=2a | —2yC,C, + 22C,C, —zyC,C, + 2°C,C, —zyC,C, + z*C,C,
0 0 0
(4.3.58)
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Let’s consider the following two matrices A and B:

sz Amy sz Bzx Bzy Bzz
A=A, A, A, and B=|B, B, B, (4.3.59)
Azz Azy Azz Bzw Bzy Bzz

The trace of their matrix product is given by:
Tr(AB) = A, Byy + Ay By + Ay By + Ayo By + Ay Byy + Ay.B.y + 0 (4.3.60)
Let’s calculate each term of this trace:

Apr = ~ ey 2a(2*C2 4 y2C,C, + 22C,C.) + 2a(y*C2 — 2yC,C,) (4.3.61)

RH
=2 (_k‘% + 2ax? + 2ay2) + C,Cy2(a — a)ry + C,CL2az 2 (4.3.62)
Ay = —kﬂHCj + 2a(xCryC, + yCyyC, + 2C,yC,) + 2a(—zyC,C, + 2°C,C,)
(4.3.63)
2 m 2 2
=C, <_ﬁ + 2ay” + 2ax > + C,Cy2(a — a)zy + C,C.2ayz (4.3.64)
Agy = —%Gzoy + 2a(2C,aC, + yCyaC, + 2C.aC,) + 20(y2C,C, — xyC,C,)
(4.3.65)
— 0,0, (—% +202% + 209°) + C22(a - a)ey + C,C- 20z (4.3.66)
Ay = —%cycx + 2a(2C,yCly + yCyyCl + 2CoyCy) + 20(—2yCyCy + 22C, Cy)
(4.3.67)
= C22(a — a)xy + C,C, <_k% + 2ay* + 20zx2> + C,C.2ayz (4.3.68)
A, = —k%cxcz + 2a(2C,aC, + yCyaCly + 2C.xC,) + 20(y*CLC, — 2yC,C.)
(4.3.69)
= C*2axrz + C,C, <_k:% + 2ax? + 2ay2) + C,C.2(a — a)xy (4.3.70)
A, = —kﬂHCyCZ + 2a(xCryC, + yCyyC, + 2CyC.) + 2a(—2yC,C, + 2*C,C.)
(4.3.71)
= C22ayz + C,C.2(a — a)zy + C,C, (—% + 2ay® + 2am2> (4.3.72)
(4.3.73)

The terms in C? come from A,, B,, and A, By, :
0 0
(—k% + 2az” + 2ay2> (—y%) +2(a — a)zy (xﬁ_;} + w> =0 (4.3.74)
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The terms in C} come from A,, By, and Ay, B, :

S oay? 4 2002 (222 _ )
<kH+2ay +2(m>(xay>+2(a a)my( y@y w)—O

The terms in C? come from A,, B,, and A,, B,, :

2axz (—yZ—i) + 2ayz (1’2—2) =0

The terms in C,Cy, come from A,, B,,, Ay Bys, Ayz By, and Ay B, -

_m 2 2\ (_, %% _ _ _
( kH—|—2ax +2ay)( y@y w>—|—2(a a)xy( y@x)

S gay? 2002 (222 _ Q) _
+< kH+2ay +2a:v)(xax+w)+2(a a)xy(:cay>—0

The terms in C,C, come from A,. B.,, Azy Biz, Aye By, and Ay, B, :

ow m 9 9 ow
(2azz) (—y%> + <_/<;_H + 2ax” + 2ay ) (—yg)

ow ow
+ (2azy) <$8_x + w) +2(a — a)zy (w$> =0

The terms in CyC, come from A,, By, Az. B.o, Ayy Byy, and A, B, :

0z (422 ) 300 o (22)

ow m ow
p i L ou? 1200 (222 =
+(ayz)(x8y)+( vt ay—l—ax)(xaz) 0

(4.3.75)

(4.3.76)

(4.3.77)

(4.3.78)

(4.3.79)

(4.3.80)

(4.3.81)

(4.3.82)

Let’s now exploit the fact that w depends only on p? and 22 to simplify the expres-

sions. Thus, according to 4.3.28, we obtain:

Qo _ 0w 0p” _, 0w
oxr  0p2 ox T Op?
Qo _ 0w 0p” _, 0w
ay_(?pzay_y

Qo _ 0w 0", Ow
0z 022 0z 022

The equation for C? becomes:

Ohw  (a—aqa)

op* (3 — 200%)
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In the particular context where a and « are constants in space (independent of 7),
starting from 4.3.34, we can deduce the following relation:

ol 1 2(a —
. (a=a) (4.3.87)
dp 2 (kﬂTO +2(a — a)p? + 2az2>
10 m 9 9
=30, {ln (k_TO +2(a — a)p” + 2az )] (4.3.88)
Thus, the obtained solution is given by:
2
w= Wpo(27) (4.3.89)
i +2(a — a)p? + 2a2?
The solutions of the other equations are compatible®®.
In the same way as before, the equation for C,C, gives us:
Olnw a
- _ 4.3.90
0z? (% — 2ap2) ( )

In the same particular context where a and « are independent of r, we can deduce
the angular velocity of the galaxy:

W= Wao (P7) (4.3.91)

e +2(a — a)p? + 2az?

This solution being compatible with the last term in C,C,®.
In the context of galaxy dynamics, if w represents the angular velocity of the
galaxy!”, then the circular velocity v at a radius p is given by:
W
V=pw=p- 0 (4.3.92)
i +2(a — a)p® + 2az?

Thus, we can establish a relationship between the gravitational force exerted by the
galaxy and the centrifugal force experienced by an object in circular orbit as follows:

ov 2 _ puwy
v +2ap% + 2(a — a)2?

(4.3.93)

!5For the terms in C7, C? = 0 and C,C,.
15 (1 20?) (84)'=
This is because the circular velocity is the speed at which a star (or any other object) must move
along a circular path to maintain a stable orbit around the center of the galaxy, due to the centripetal
force provided by the gravitational attraction of the galaxy.
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The partial derivative of the gravitational potential ¥ with respect to the radial
coordinate p, denoted —%—i’, represents the gravitational acceleration. For an object to
maintain a circular orbit, this acceleration must be equal to the centrifugal force, which
is given by pw?!8.

18The constraint on the gravitational potential indicates that for a star in a stable orbit, the grav-
itational force must exactly counterbalance the centrifugal force at each radius p. This condition is
fundamental for determining the mass distribution in galaxies using observed rotation curves.
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First-Order Solution

The terms contributing to the solution of the Vlasov equation are C - V,In(f) and

(V¥ +c,- %cr") - Ve In(f), and must satisfy the relation:

C-V.In(f) + (v,.\p +e,- %‘ij’) Veln(f) =0 (4.3.94)

We need to express C - V. In(f) while retaining only the first-order terms, namely:

CalnBzcalnB C@lnB CalnB

o Tar Vo TV as (4.3.95)

Regarding (V¥ + ¢, - %cro) Ve In(f), we know that the angular velocity of a galaxy

w depends only on p? and 2z2. Thus, equations 4.3.83, 4.3.84, and 4.3.85 allow us to
transform relation 4.3.51 as follows:

ow 2 Ow
doy_ (i 2
or ) T ow e
—2Yz55s 20255 0

Thus, its dot product with 4.3.9 allows us to deduce that:

8C0
Cogm = —w? (z,y,0) (4.3.97)
Then :
dc,
(m e, E) (B9 L2 (4y.0) (4.3.98)

Now we know that!? :

w2 (z,y,0) = — (3\110) = — (8\110 0o aqu) with Uy = —lwzopQ (4.3.99)

or or’ Oy’ 0z 2
Consequently:
8ca 3(\11 + \I/0>
V.:.¥ o' —— | = —7F77F 4.3.100
( e or ) or ( )
Thus, according to 4.3.9, 4.3.12, and 4.3.53, we can deduce:
C, rxC, + xyC, + x2C, y*C, — zyC,
m
Veln(f) = T Cy | +2a | 2yCp + yyCy + y2C, | +2a | —2yC, + 22C,
C, 220, +yzCy + 220, 0
(4.3.101)
19Considering 4.3.28, we can deduce that 88—‘1:)0 = —%wf@%—’f = —w? (z,y,0)
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This yields:

Cy (— 2% + 2az* + 2ay?) + Cy2zy(a — o) + C.2azz
Veln(f) = | Co2ay(a — o) + Cy (— 2% + 2ay® + 202?) + C.2ayz (4.3.102)
Cr2axz + Cy2ayz + C, (—kﬂH + 2az2)

We thus obtain:

Cy (— 2% + 2az* + 2ay?) + C2zy(a — @) + C.2azz
dc, oV + v TN OkH v z
(Vr\II +c,- 8i) Veln(f) = —(8;0) Cy2xy(a —a) +Cy (—% + 2ay® + 204902) + C.2ayz
t r Cr2axz + Cy2ayz + C, (—% + 2(122)
(4.3.103)
Thus, the three partial differential equations that satisfy the first-order terms of the
Vlasov equation 4.3.94 are as follows?® :

OB (T +Ty) [ m , N\ 9T+ W) oW+ W)
pe + 5 (k‘To +2(a — a)y® + 2az 28—yxy(a Q) QTaxz =0
(4.3.104)
OB 0T + ) oW + W) [ m s o\ 0T+ )
9 . 2a — 2022 — 222 T 70 s
o e zy(a —a) + 3y T +2(a — )z + 2az 5, W 0
(4.3.105)
OlnB _0(V+ V) OV + W) IV +Ty) (m 5
2 22—~ i S DA _
0z * ox 7 + Jy we 0z KTy eaz 0
(4.3.106)

4.3.2 Modeling the Effects of Negative Mass Environment on
Velocity Distribution

In spherical symmetry, the two transverse axes of the velocity ellipsoid, which are equal,
differ from the axis pointing towards the center of the galaxy. For an axisymmetric
system, the two transverse axes differ, which was developed in reference [60]. In the
configuration of figure 4.2, the form of the velocity distribution function corresponds to
a particular spherically symmetric configuration:

In(f) =In B(r) — <S—22> +a(r)(C - r)? (4.3.107)

The equation takes into account the mean square velocity of particles, denoted (c?),
and a potential function B(r), as well as a function a(r) that adjusts the distribution
based on the radial distance r. The term C represents the residual thermal agitation
velocity, and C - r represents the dot product of the residual velocity with the position

20Gtill in the specific context where a and « are constants in space and knowing that according to
4.3.34, we obtain [ = ;7 + 2ar? = e+ 2ax? 4 2ay? + 202>
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vector, which would have significance in the context of a velocity distribution in a galaxy
or a similar system.

Negative mass

Figure 4.2: Galaxy surrounded by a confining negative mass.

For the negative mass environment, a Maxwellian velocity distribution is used:
CZ
(%)
By introducing these functions into the two Vlasov equations 4.3.6 and 4.3.7 and

using dyadic algebra ([16] [73]), we obtain exact solutions that model the confinement
of this spheroidal galaxy corresponding to Figure 4.3.

In(f) =InB(r) — (4.3.108)

Figure 4.3: Spheroidal galaxy, globular cluster, or galaxy cluster.
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This model highlights the role of the negative mass environment in confining spheroidal
galaxies, galaxy clusters, and, in the case of galaxies, gives the possibility to reconstruct
their flat rotation curves. The positive mass objects are located in voids of the negative
mass distribution. These voids, equivalent to a positive mass, are primarily responsible
for the observed gravitational lensing effects. Thus, the model accounts for this set of
observations.

From this perspective, it offers an alternative to the dark matter model. In this
context, a solid body rotation?! is introduced.

The image in figure 3.7 comes from numerical simulations conducted at the Deutsches
Elektronen-Synchrotron (DESY) laboratory in Hamburg in 1992 by student Frédéric
Descamp, who used the pseudonym F. Landsheat in his publications. Within just a few
cycles, after a transient phase, a barred spiral galaxy forms, which persists for about
thirty cycles [59].

The evolution of the galaxy’s angular momentum, as well as the establishment of
its rotation curve differing from the initial solid body rotation, are illustrated in figure
3.8.

The phenomenon of deceleration serves as an illustration in systems where collisions
are minimal and transport phenomena such as heat and angular momentum are neg-
ligible. In the context of spiral galaxies, these interactions are orchestrated by density
waves, which become evident in the distribution of positive masses and their counter-
parts in the realm of negative masses, as demonstrated by numerical simulations.

For three decades, astrophysicists have linked the observed spiral structures in galax-
ies to a phenomenon of deceleration. A recent research paper [18| presents observational
evidence for this phenomenon, known as dynamical friction. The authors conclude that
this supports the hypothesis of the existence of a dark matter halo, which, in their
view, explains this deceleration. Nevertheless, an alternative interpretation remains
plausible. This study can be seen as providing an argument in favor of the idea that
deceleration results from the interaction between the mass of the galaxy and its nega-
tive mass environment.

NB:

e Angular momentum is a physical property that describes the rotation of an ob-
ject. For a galaxy, this means how it spins in space. The evolution of angular
momentum indicates that over time, the way the galaxy rotates changes. This can

21 This means that all parts of the object rotate at the same speed, like a spinning top. However,
the actual rotation curve of the galaxy differs from this simple solid-body model. In other words, the
galaxy’s rotational speed varies at different distances from the center, which is typical for real galaxies.

153



CHAPTER 4. MODELING GALACTIC DYNAMICS

be due to several factors, such as gravitational interactions with other galaxies or
its negative mass environment, internal movements of stars, or even the formation
of new structures within the galaxy.

e The rotation curve of a galaxy shows how the rotation speed varies at different
distances from its center. Typically, one would expect the far parts of the galaxy
to rotate more slowly than the parts closer to the center, much like the planets in
our solar system - the farther they are from the sun, the slower their orbital speed.

e A phenomenon of dynamical friction exists within the galaxy. It is a process that
occurs when a massive object, like a star or a group of stars, moves through a
dense field of matter made up of gas and stars in a galaxy. As it moves, this
massive object attracts the surrounding matter due to gravity. This matter in
return pulls on the object, gradually slowing it down. I[magine running through
a crowd. Even if people do not stop you directly, their presence slows your move-
ment. This is a simple analogy for dynamical friction. When many objects in a
galaxy undergo dynamical friction, it can slow down the overall rotation of the
galaxy. This slowing is usually not uniform; it can affect different parts of the
galaxy differently, depending on the distribution of matter and the movements of
stars and other objects.
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In the early 2000s, Petit developed two elements of the Janus model at the same
time. The first was 1n the ficld of differential geometry, focusing on the
construction of his system of two coupled ficld equations. But a sccond front is
emerging, based on the way his friend and neighbor, the French mathematician
Jean-Marie Souriau (who died in 2012), constructs the physics quantities energy
(and hence mass), momentum and spin from the Minkowski1 space isometry group.
The world of negative energies and masses then unfolds naturally when, 1in 1970,
Souriau extends this mathematical technique to the complete i1sometry group, 1.e.
to Poincaré's group including antichronous, time-reversing clements.

Petit was inspired by the old idea that the fact that masses are endowed with an
electric charge goes hand in hand with the inscription of their motion in a 5D
(Kaluza) space. He also introduced matter-antimatter symmetry, resulting in his
Janus group, a 5D, cight-dimensional extension of the Poincar¢ group.

This is the dynamic (symplectic) group of his Janus Cosmological Model. From
this it follows that, since the duality of matter and antimatter also exists in the
negative world, there are two antimatter particles of opposite mass. This leads to
the prediction that positive-mass antimatter, that created in the laboratory, will
“fall down™, a prediction rapidly confirmed by the CERN experiment.
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Chapter 5

Contribution to Cosmology & Particle
Physics

5.1 Introduction to Dynamic Groups

Dynamical Systems Theory is a mathematical discipline focused on the analysis of the
evolution over time of various systems, taking into account initial conditions and ex-
ternal influences. Symplectic Geometry, which merges aspects of dynamical systems
theory with those of differential geometry, examines the properties and deformations
of curved spaces under the action of external forces. This field, based on the principles
of Hamiltonian mechanics, explores structures named "symplectic varieties”, endowed
with a unique configuration useful for measuring volumes. Unlike Riemannian geom-
etry, which uses a metric tensor to measure lengths and angles, symplectic geometry
employs a mathematical form, the "symplectic form", for the calculation of areas.

Jean-Marc Souriau was a leading pioneer in symplectic topological geometry. He
developed the concept of geometric quantization, transforming fundamental physical
quantities like energy and momentum into purely geometric objects. Souriau’s work
gave physical meaning to the reversal of time’s arrow in our cosmological model (][9],
[33])-

What is a group?

In mathematical terms, it refers to certain matrices acting upon other matrices. But
physically, what does this represent?

According to J-M Souriau, a group is created for transportation, and the method of
transport is more significant than the transported entity: “Tell me how you mowve, and
I will tell you who you are.”

Our focus is primarily on Lie groups(see |11]), which are both groups and differential
manifolds (locally projected “curved spaces” onto an n-dimensional Euclidean space).
They are instrumental in describing movements and transformations in space. Two key
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groups are the orthogonal group O(3) and the Euclidean group E(3):

e The orthogonal group O(3) is used to describe rotations and symmetries in
three dimensions, preserving distances in space. It includes a crucial subgroup
called SO(3), the rotation group, which manages rotations around an axis.

e The Euclidean group E(3) describes three-dimensional movements like ro-
tations, symmetries, and translations. Built upon the orthogonal group O(3),
it can be broken down into a force and a couple applied to an object in solid
mechanics. It’s a group within which the Pythagorean theorem can be used to
calculate the length between two points. This group transforms a point with
coordinates x,y, z to a new point with coordinates ', v, z/. The unique feature
of this dynamic group is its ability to generate a family of geometric objects in-
variant within the group. For example, a line subjected to translation remains
a line, making it a one-dimensional invariant geometric object. A sphere is a
perfect example of a three-dimensional symmetric object. Its unique property is
that it remains unchanged under rotations around its center, showcasing rota-
tional symmetry. In geometric terms, this implies that when a sphere undergoes
a rotational movement, it maintains its geometric properties uniformly at every
point. In the field of physics, particularly in the study of space-time in general
relativity, Schwarzschild’s solution is an important concept. It describes the grav-
itational field outside a non-rotating, spherically symmetric mass such as a star.
The Schwarzschild metric, a solution to Einstein’s field equations, is invariant
under rotations and translations in time and space, resembling the invariance
observed in Euclidean geometry but applied to the curved space-time of general
relativity. In Schwarzschild space-time, geodesics are determined by the curva-
ture of space-time, which is described by the Schwarzschild metric. For an object
moving along a geodesic, certain quantities such as its angular momentum and
energy relative to the mass causing the curvature of space-time are conserved.
This conservation is the result of the symmetries of space-time, analogous to the
laws of conservation in classical mechanics.

Lie groups thus describe movements in space while preserving distances and lengths.
They are groups of isometry when the geometric properties of moving objects remain
unchanged (distances and angles) in space during a transformation. Rotations are
examples of three-dimensional space symmetries, as they do not alter the geometric
properties of the space. For instance, rotating a cube does not change the distances
between its vertices. In other words, the geometric properties of the object remain
unchanged, even though its position has been modified.

According to the theory of special relativity, instead of living in a three-dimensional
Euclidean space [x,y, z] with a signature (+ + +) where time is a distinct entity, we
actually exist in a four-dimensional spacetime where the three spatial dimensions are
perpendicular to one temporal dimension [t, x,y, z] called Minkowski spacetime, with a
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signature of (— + ++).

The Poincaré group, associated with this space, plays a crucial role in describing
motion in the spacetime of special relativity. This group allows for modeling specific
behaviors, especially those of massless particles like photons, which move invariably at
the speed of light. While their speed remains constant, gravity affects their energy,
leading to phenomena such as gravitational redshift. Furthermore, the Poincaré group
also applies to particles with nonzero mass, each following its own dynamics dictated
by the principles of relativity. This dynamic group applied to special relativity, includes
the motion of masses or photons with a possible reversal of the time arrow! and can be
represented in matrix form as follows :

( L > (5.1.1)

where L represents the matrix of the Lorentz group (Lor) which describes how space-
time coordinates change between different inertial frames. These transformations in-
clude rotations in space as well as Lorentz transformations (boosts), which are changes
of reference frames moving at a constant speed relative to each other. And C' is the
vector corresponding to spatio-temporal translations in RY3.

Indeed, half of the elements of the dynamic group reverse time, implying that if we
consider a space-time element like a mass or a photon and apply a temporal motion
from past to future, we can achieve the same motion in the reverse direction using the
Poincaré group. Consequently, according to Souriau’s theory from his work "Structure
of Dynamic Systems” (|33]), if the dynamic group can circulate photons or masses with
a time arrow in opposition, then their energy, and thus their mass, can also be reversed.

N.B.: The restricted Poincaré group exclusively handles "orthochronous” relativistic
movements in four-dimensional Minkowski space, transitioning from past to future. Its
matrix form includes the matrix L, of the "orthochronous”" Lorentz group Lor, as

follows:
L, C
(%) 512

Can we now consider these movements with negative energy and mass and an opposing
time arrow as part of Physics? Can they be measured or observed?

Particles with negative energy emit photons of negative energy, so they cannot be
observed or measured optically. However, it has been observed and measured that the
expansion of the universe is accelerating due to negative pressure linked to dark energy
(|47]). Indeed, pressure is an energy density per unit volume.

!From past to future and vice versa.
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Thus, the expansion of the universe is directly linked to negative energy. This sug-
gests that a substantial part of the universe, currently defined as dark energy, affects
this expansion through gravitational effect. This dynamic group and geometric ap-
proach, therefore, provide an answer to its origin and nature. It could be content with
masses or photons charged with negative energy.

5.2 Various Symmetries Associated with Each Inver-
sion Operator

The restricted Poincaré group handles relativistic movements in four-dimensional Minkowski
space. The Poincaré group is the group according to the following matrix :

< Lo ) (5.2.1)

where C' is the vector corresponding to spatio-temporal translations in RY3:

At
Ax
C= Ay (5.2.2)
Az
It acts on points in Minkowski space:
4
x
= 5.2.3
=17 (523
z

This 10-dimensional group is the isometry group of this space, defined by its metric:
ds® = dt* — dz® — dy* — dz? (5.2.4)
The Lorentz group Lor has four connected components:

e Lor, is the neutral component (its restricted subgroup), does not invert either
space or time and is defined by:

Lor, ={L € Lor, det(L) =1 A [L]oo > 1}
e Lor, inverts space and is defined by:
Lors ={L € Lor, det(L) = —=1 A [L]oo > 1}
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e Lor, inverts time but not space and is defined by:

Lory ={L € Lor, det(L) =1 A [L]po < —1}

e Lor, inverts both space and time and is defined by:

Lors ={L € Lor, det(L) =—1 A [L]oo < —1}

And we have:
Lor = Lor, U Lor,U Lor, U Lorg (5.2.5)

The first two components are grouped to form the so-called “orthochronous” sub-

group:
Lor, = Lor, U Lor, (5.2.6)

It includes P-symmetry, which poses no problem for physicists who know that there
are photons of "right"” and "left" helicity whose motions are derived from this symme-
try. This corresponds to the phenomenon of the polarization of light.

The last two components form the subset "retrochronous” or "antichronous", whose
components invert time:

Lor, = Lor, U Lorg (5.2.7)
Thus, we have:
Lor = Lor, U Lor, (5.2.8)
Noting that:
Lory = —Lory Lorg = —Lor, (5.2.9)

The Poincaré group inherits the properties of the Lorentz group and thus has four
connected components, it’s defined by:

Poin = {( g ? > , LeLornC e ]Rm} (5.2.10)

5.3 Lorentz Dynamic Group

The application of the coadjoint action of a dynamic group on the dual of its Lie alge-
bra, initiated by mathematician Jean-Marie Souriau, has shed light on specific aspects
of the approach followed in physics. The restricted dynamic Lorentz group, limited to
its two orthochronous components, translates, through its resulting invariance proper-
ties, aspects of special relativity. In 1970, J-M Souriau established that the analysis
of the components of its moment highlights the geometric nature of a (non-quantified)
spin (|70| |72]). The Lorentz group has two connected orthochronous components,
namely its first neutral component, containing the neutral element of the group, and
its second enantiomorphic component, inverting space synonymous with P-Symmetry.
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In dynamic group theory, a classification in terms of movements is made apparent. At
this stage, the action of these space-inverting elements is illustrated in the phenomenon
of light polarization, where any "right” photon can be converted into a "[eft” photon.
This group can be represented by a family of 4 x 4 matrices L, axiomatically defined by
LTGL = G, where LT is the transpose of the Lorentz matrix L, and G is the Minkowski
metric matrix, often referred to as the Gram matrix in this context. In special relativ-
ity, it is generally represented by a diagonal matrix with elements diag(1,—1,—1,—1).
This equation signifies that the Lorentz transformation preserves the Minkowski inner
product, a crucial condition for the coherence of the theory of special relativity.

5.4 Restricted Poincaré Dynamic Group

The product of the Lorentz group with the spatiotemporal translation group allows us to
construct the restricted Poincaré dynamic group, still limited to its two orthochronous
components. In its moment, we first find the energy related to the subgroup of tem-
poral translations. Then the momentum, related to spatial translations, both being
linked by the invariance of the modulus of the energy-momentum four-vector under the
action of the Lorentz group. The matrix associated with this group must include the
"orthochronous” Lorentz matrix L, of dimension 3 x 3, as well as the translation vector
C' and additional components to complete its structure(See 5.1.2).

5.5 Restricted Kaluza & Janus Dynamic Groups

By adding a translation along a fifth dimension to the restricted Poincaré group, we
form a Lie group to which we will give the name Restricted Kaluza Group (|6], 8],
[9], [33], [35]). This group is not the 15-dimensional Kaluza group associated with
a H-dimensional Lorentzian manifold but a new 11-dimensional group, including 5-
dimensional space-time translation. This new dimension endows the momentum with
an additional scalar that can be identified with the electric charge ¢, which may be
positive, negative, or zero, and is still not quantized. We then bring out the geometric
translation according to a scalar ¢ due to endowing the masses with an invariant electric
charge. Then, by bringing in a new symmetry reflecting the inversion of the fifth
dimension, synonymous with an inversion of the scalar from ¢ to —¢, we double the
number of its connected components from 2 to 4. The action on the moment then
links this new symmetry to the inversion of the electric charge q. We thus deduce the
geometric modeling of charge conjugation or C-Symmetry, which translates the matter-
antimatter symmetry introduced by Dirac. It’s then logical to name this new extension,
the Restricted Janus Group.

160



CHAPTER 5. CONTRIBUTION TO COSMOLOGY & PARTICLE PHYSICS

5.6 Janus Dynamic Group

By introducing a new symmetry to the previous group, which we describe as 7T-
Symmetry and which converts matter into antimatter with negative mass — a concept
we could name antimatter in the Feynman sense — we build the Janus Dynamic Group.
Thus, we double the number of connected components from four to eight, grouped
into two subsets: "Orthochronous”, conserving time and energy properties, and "An-
tichronous", reversing time and energy. Therefore, we bring forth the geometric trans-
lation of endowing masses with an invariant electric charge. As the Jean-Marie Souriau
demonstrated as early as 1970, a pioneer in the theory of dynamic groups ([70], [72]),
this approach has allowed key elements, which have marked the progress of relativistic
physics, to be given a purely geometric nature.

Here is the matrix associated with the Janus Dynamic Group from which it is
possible to reconstruct all the symmetry groups:

(1 0 o
Jan = 0 T*S"L, C|, \pc{0,1}A ¢ c€RA LE LorA CeR
0 0 1
(5.6.1)
e P-Symmetry :
By setting 4 =0, A =0, and v = 1, we obtain:
1 0 ¢
Jan = 0 Ly C|,¢pERA Ly=SL, € LorN CcR" (5.6.2)
0 0 1

This symmetry operator corresponds to the inversion of space where an element of
the second connected component of the orthochronous group is considered. It is
this symmetry that inverts the helicity of a photon, transforming a “right-handed
photon” into a “left-handed photon” which corresponds to the phenomenon of light
polarization.

e C-Symmetry :
We must apply =1, A =0 and v = 0.
Starting from the Ln element of the restricted Lorentz orthochronous group, by
inverting the fifth dimension carrying the electric charge ¢, we obtain the "C-
symmetry" operator or "charge conjugation” (quantum) such that:

-1 0 ¢
Jan = 0 L, C|,¢peRA L, <€ Lor N\ CeRY (5.6.3)
0 0 1
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It is this symmetry that represents the "Matter-Antimatter” transformation.

o T-Symmetry :
By setting =0, A = 1, and v = 0, we remove the symmetry C (Jan;; = 1) and
the symmetry P (Jangs = —Ls). We obtain:

1 0 ¢
Jan = 0 -L, C|,¢9peRA Ly=—L,=-TL, € Lor N C R
0 0 1

(5.6.4)

e CP-Symmetry :
By setting p =1, A =0, and v = 1, we add the symmetry C (Jani;; = —1) and
the symmetry P (Jansy = L) to obtain:

-1 0 ¢
Jan = 0 Ly C|,¢peRA Ly=SL,¢c LorN C R (5.6.5)
0 0 1

NB : We can deduce it also by removing the T-symmetry (Jansy = L) from the
CPT-symmetry following this operation : CP =T - CPT

e CPT-Symmetry :
We must apply p=1, A=1and v = 1.
We know that the element L, of the Neutral group does not reverse either time
or space, so the element [Jan.y = —L,, reverses both space and time to form the
PT-symmetry operator. However, if we add the C-symmetry (Jan;; = —1), we
form the CPT Janus group with charge symmetry such as:

-1 0 ¢
Jan = 0 —L, C|,¢9eRA L,=-TSL, € Lor N C €R"
0 0 1

(5.6.6)

e PT-Symmetry :
We must apply p =0, A=1and v = 1.
By removing the C-symmetry (Jani;; = 1) from the CPT-symmetry following
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this operation : PT = C - CPT we obtain :

1 0 o
Jan = 0 —L, C|,¢eRA L,=-TSL, € Lor N C €R"
0 O 1

(5.6.7)

o CT-Symmetry :
We must apply p =1, A =1 and v = 0.
Then, by removing the P-symmetry (Jangs = —Lg) from the CPT-symmetry
following this operation : CT = P - CPT we obtain :

-1 0 ¢
Jan = 0 —L, C|,¢peRA Ly=-TL, € Lor N C R
0o 0 1

(5.6.8)

e Neutral Operator :
By setting 1 = 0, A = 0, and v = 0, the object moves through the five dimensions
without changing its nature. Only the neutral element of the "orthochronous”
subgroup is considered (Jang, = L,). We obtain:

1 0 ¢
Jan={ |0 L, C|, ¢€RA L, € Lorn CcRY? (5.6.9)
0 0 1

It should be noted that Feynman considers that applying P7T-symmetry to the
motions of particles leads to the creation of antimatter through the application of C-
symmetry. Therefore, PT-symmetry is equivalent to C-symmetry, i.e. a particle of
matter "seen in a mirror” and moving backward in time is antimatter.

This perspective is derived from Weinberg’s work, "The Quantum Theory of Fields"
in Section 2.6, titled "Space Inversion and Time-Reversal” ([79]). Indeed, an arbitrary
choice is applied for the inversion operator T, resulting in the fact that the CPT oper-
ator becomes the identity.

Thus, given that CPT =1, it follows that PT = PT -1 =PT - CPT = C. Conse-
quently, Feynman’s viewpoint relies primarily on Quantum Mechanics, where quantum
theorists make a priori, entirely arbitrary choices regarding the P and T operators,
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constrained by the "need to avoid the emergence of negative energy states (considered
non-physical)". Therefore, the P operator must be linear and unitary, and the 7" op-
erator antilinear and antiunitary. And to conclude by adding on page 104 that: "No
examples are known of particles that furnish unconventional representations of inver-
stons, so these possibilities will not be pursued further here. From now on, the inversions
will be assumed to have the conventional action assumed in Section 2.6".

Negative energy states (associated with negative pressure) exist because they’re re-
sponsible for the acceleration of cosmic expansion, as evidenced by Perlmutter’s Nobel
Prize-winning work in 2011 (|47]). However, at the time when Quantum Field Theory
emerged, this phenomenon was not yet known.

Therefore, for Feynman, the presence of the time inversion operator 7' in its global
PT-symmetry does not lead to mass inversion but transforms matter into positive-mass
antimatter by charge inversion through the C-symmetry.

In the view of the Janus group, starting from the motion of a particle with positive
mass in 5D space, C-symmetry (carried by the inversion of the fifth dimension) trans-
forms this particle (this motion) into a positive-mass antiparticle that can be called a
"Dirac-like antiparticle”, which is the kind produced in laboratories and has recently
been demonstrated to behave in the same way as ordinary matter under the influence
of gravity ([5]).

On the other hand, the PT-symmetric transformation applied to a particle produces
an antiparticle with negative energy and mass, due to T-symmetry, which can be called
a "Feynman-like antiparticle” which corresponds to primordial antimatter located be-
tween galaxies and is notably found as conglomerates in the Great Repeller (|31]). The
equivalence PT = (', according to Feynman, is then no longer applicable.

5.7 Implications

This study’s significant contributions primarily affect the fields of Quantum Mechanics
and Cosmology:

e In Quantum Mechanics, a notable aspect is the reversal of energy of certain
objects. An intriguing question arises regarding the feasibility of objects with neg-
ative energy states in Quantum Mechanics. In addressing 7-Symmetry, quantum
physicists traditionally adopt an anti-linear and anti-unitary perspective for the
T-operator, aiming to exclude negative energy states, which are generally not con-
sidered intrinsic to physics. Similarly, a P-operator is chosen to be unitary and lin-
ear for analogous reasons (see |79]). These selections underpin the CPT-theorem,
reinforcing the notion that PT-Symmetry aligns with C-Symmetry. Contrarily,
adopting a linear and unitary T-operator reveals that negative energy states are a
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natural outcome in the Schrédinger and Dirac equations(see [21]), paving the way
for novel research avenues. Moreover, cosmological observations have confirmed
that the universe’s expansion is accelerating, attributed to a negative pressure
associated with dark energy, as demonstrated by the Nobel Prize-winning work
of Perlmutter in 2011. Since pressure represents energy density per volume, this
phenomenon directly correlates with negative energy influencing the universe’s
expansion.

e In the realm of Cosmology, general relativity firmly dismisses the concept of
negative masses, citing the emergence of the Runaway phenomenon and conflicts
with the principles of action-reaction and equivalence (see [10]). Therefore, any
new model proposing the integration of negative energy and mass states would
necessitate an expansion of the foundational geometric framework of relativity.
The dynamic group theory, revolving around various groups such as Lorentz,
Poincaré, or Kaluza, provides a framework for depicting a universe devoid of
forces, characterized by a flat, uncurved structure. In such a universe, particles
trace the geodesics of Minkowski space within a Lorentzian metric or navigate a
fibered space influenced by a fifth dimension, be it open or closed. This theoretical
approach intimates the coexistence of two distinct types of matter, existing in
isolation without mutual interaction. Thus, particles within these spaces do not
interact with each other. This innovative perspective opens new pathways in
understanding particle-space-time interactions.
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5.8 Appendix

In the theory of dynamic groups developed by J.M. Souriau in 1970, the connection
between the geometric structure and the physical content of a system is explored using
specific dynamic groups ([70],[72]). These dynamic groups describe the symmetries and
transformations that preserve the geometric properties of the system. By studying the
nature of the dynamic group associated with a given physical system, we can determine
the relationships between geometry and the associated physical quantities.

Every movement of an object in space-time has its moment. However, this is not
synonymous with an instant or the physical concepts of linear or angular momentum.
The term moment in group theory refers to movement, that is, a physical displacement
between points in space.

To determine this moment, it is necessary to first define what a group action is. This
refers to the way in which a group of matrices can act by multiplication on another
group of matrices in order to manage, for example in the Euclidean group, rotations,
symmetries, and translations in a single operation.

But J.M. Souriau discovered that a group can also act on moments, in turn generat-
ing a new geometric space. Thus, there may be another action of the group on another
space. In fact, there is a space where movements are inscribed: space-time. In the four-
dimensional Minkowski space-time, a group acts on a point ¢y, z1, y1, 21 to give another
point t9, x9, Yo, 2o. However, what is inscribed in space-time is only the trajectory. Yet,
the movement acts in two spaces, the second being the space of movement parameters,
which Souriau calls the space of moments?.

The Coadjoint Action of the Poincaré Group on its Space of
Moments

Consider the movement of an object in space. Such movement is also defined by its
moment . The physicist can then apply an element g, for example from the Galilean
group, to this moment . This produces a new moment '. This action can be written

2Souriau’s approach, thanks to the Poincaré group which is the isometry group of Minkowski
space encompassing the Lorentz group (with its four connected components), allows the parameters
associated with each of these movements, whose representative points belong to a vector space, the
space of moments, to emerge. The dimension of this space is equal to that of the group: ten. Indeed,
the Lorentz group is made up of transformations that preserve the quadratic form of space-time. It
consists of the orthochronous Lorentz transformations and the translation group. The orthochronous
Lorentz transformations have six degrees of freedom, while the translation group has 4 degrees of
freedom. This structure leads to a total dimension of the Poincaré group of ten. By grouping them
in an antisymmetric matrix called a torsor, it is thus possible to define the parameters of the space of
movements.
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as follows:
W=gxpxg’ (5.8.1)
g" represents the transpose of this matrix, and p is the matrix of moments. It is an
antisymmetric matrix of size 5 X 5, meaning that symmetric elements with respect to
the main diagonal have opposite signs. The elements of the main diagonal are equal to
zero (which is its own opposite). We can define this matrix as follows:

0 _lz ly fﬂc —DPz
lz 0 _la: fy _py
K= _ly ly 0 fz —p: (582)
_fz _fy _fz 0 )
Pz Py P E 0

For example, to better understand what p represents, this 5 x 5 matrix can be bro-
ken down as follows:

e A matrix M of dimension 4 x 4 given by:

0 =L I, fs

_ l. 0 =l fy
M = L 0 T (5.8.3)
_fz _fy _fz 0
e An energy-momentum vector P of dimension 4 x 1 given by?:
Pz
p=| v (5.8.4)
2
E

e Its transpose, the row vector PT of dimension 1 x 4 given by:
P'=(p, py p- E) (5.8.5)

We can deduce the more compact form of p as follows:

o= (% _OP) (5.8.6)

The coadjoint action is the action of a group on its space of moments. More specif-
ically, it is the action of a Lie group on the dual vector space of its Lie algebra?

3We specify the word vector to indicate the nature of the variable used, in order not to overload
the expressions.
4The dual of a Lie algebra, in the context of physics, is a mathematical space composed of covectors.
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Poincaré Group

In General Relativity, the Poincaré group governs the motion of relativistic material
particles (5.2.10) and can be defined by the matrix group®:

:z{(é ?),L:)\Loeﬁor/\)\zil/\CERl’3} (5.8.7)

acting on Minkowski space as follows:

g(X)=LX+C (5.8.8)

The action of the group on its space of moments is the action on the dual of the Lie
algebra of the group. The element of the Lie algebra is obtained by differentiating the
ten components of the group. Souriau designates by the Greek letter A the differential
of the square matrix Z representing the element of the Poincaré group, and by the
Greek letter " the element of the subgroup of spatio-temporal translations®:

7 = {(/3 g) ,A=—-ANT € Rl’?’} (5.8.9)

We have shown that the moment matrix g includes elements with a physical inter-
pretation, such as the four-vector P, where E represents the energy and p = {p,, py.p.}
the linear momentum.

However, what is the essence and physical significance of this antisymmetric matrix
M ?

These covectors are mathematical entities that assign scalar values to vectors in the Lie algebra,
representing physical quantities that do not have a specific direction, such as energy or temperature.
Moments, in this context, are measures that describe how the transformations associated with a Lie
group modify the Lie algebra itself. The coadjoint representation is a method by which a group acts on
the dual of its Lie algebra. This action allows for the examination of the transformation of covectors,
like moments, under the influence of the group. The interest of this approach lies in its ability to
reveal information about the geometric and physical characteristics of systems studied, by analyzing
how these systems evolve or remain invariant under the transformations of the group.

5(13.51) and (13.52) of [72]

6(13.54) of [72]. He then writes u, an element of the space of movements, in the form (13.57) and
expresses the invariance in the form of the constancy of the scalar (13.58), where M is an antisymmetric
matrix.
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Let’s proceed to decompose it to find out:

o =L Il fs

_ l, 0 =l fy
M= =1, I 0 f.
_fx _fy _fz 0
0 =l 1
S=1 1 0 -1, (5.8.10)
—ly, 0
fz
|y
/ 1.
0
In its compact form:
(S 7
M = (—fT 0) (5.8.11)

The velocity V' is implicitly integrated into the L matrix of the Lorentz group.
When examining a motion occurring in a specific direction, for example along an axis,
with a velocity V' and a translation Az = ¢, and ¢ = VAt, we then place ourselves
in a coordinate system that follows the motion of the particle along this translation in
space-time. In this context, the vector f turns out to be null.

The matrix S can then be expressed as follows:

—S

0
S=1s 0 (5.8.12)
0 0

o O O

The term refers to the spin of a particle. As Souriau demonstrated in 1970, it has
a purely geometric nature: it is represented by an antisymmetric matrix of size 3 x 3.
The method of geometric quantization he developed reveals that spin can only be an
integer multiple of 7 (the reduced Planck constant). Souriau also explored, in [72], how
the existence of an electric charge in a particle suggests its movement in a spacetime
endowed with a fifth dimension of extremely small size”, similar to the Kaluza dimen-
sion, which is looped onto itself like a bundle of fibers. This fifth dimension, being
looped onto itself, could lead to the geometric quantization of electric charge, thanks to
a "closure form" in spacetime, allowing an object to become identical to itself after a
360° rotation. This characteristic is fundamental for understanding the quantification
of spin.

"The Planck length
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The quantity f = [fs, fy, f-], designated by Souriau as the "passage”, cancels out in
the frame of the moving particle and is only perceptible from another frame, illustrating
an effect of motion®.

The relationship C,, = f + pt establishes a link between the passage f and the
position of the center of mass C,, at time ¢t = 0.

The complete Galilean moment consists of the following elements:
i = {energy, mass, momentum, passage, spin}

Every movement of an object is characterized by its own moment, which can only
be partially transferred from one object to another, without the possibility of creation
or disappearance. This allows the moment to be measured by transferring a part of the
object’s moment to the measuring instrument.

It is important to note that rest mass is considered a parameter of the moment. Un-
like classical mass, which was treated as an arbitrary additive constant in the Galilean
group, mass in the Poincaré group is defined as relativistic mass m = c%, and thus varies
with velocity. This treatment also differs from the non-relativistic dynamic group by
the absence of barycentric decomposition®’, a feature of the Galilean group resulting
from the existence of a privileged subgroup absent in the Poincaré group'®. Any virtual
movement can be interpreted as a real movement by changing the frame of reference!®.
The Poincaré group thus describes the properties of elementary particles using only two
physically interpretable parameters: rest mass and spin'?.

For massless particles such as the photons, helicity, in addition to polarization (lin-
ear or elliptical), is also crucial. The helicity of the photon, which can take the values
+1, corresponds respectively to left circular polarization (LCP) and right circular po-
larization (RCP). The helicity of a particle is determined by the orientation of its spin

8For example, you are sitting in a flying plane at the back of the cabin, and you are asked to move
forward. You can only pass if you “borrow some passage” from the plane. This will cause it to deviate
slightly from its initial flight plan. It is the conservation of passage that establishes the following rule:
If an object is in free space, its center of mass moves in a straight line, at a constant speed, in the
direction of the momentum unless disturbed by external forces such as gravity. If the momentum is
zero, the center of mass is stationary.

9The concept of barycentric decomposition refers to the ability to separate the motion of a system
into a motion of the center of mass and relative motions of the particles around this center.

0As we have already studied, the Galilean group governs the transformations between inertial
frames. An important feature of the Galilean group is the ability to identify a center of mass (or
barycenter) for a system of particles, which behaves simply under these transformations. In special
relativity, the concept of the center of mass is not as simple or universal as in classical mechanics,
because the definition of the center of mass depends on the frame of reference.

1Tn special relativity, what may appear as purely hypothetical movement in one frame can be
observed as a concrete physical movement in another.

12or intrinsic angular momentum

170



CHAPTER 5. CONTRIBUTION TO COSMOLOGY & PARTICLE PHYSICS

relative to its motion vector.

Now that we have introduced the main tools, we can show the coadjoint action of
the Poincaré group on its space of moments.

We know that the coadjoint action is the action of a Lie group on the dual vector
space of its Lie algebra.

Thus, by applying the action of the Poincaré group on the dual of its Lie algebra,
i.e., on its space of moments, we obtain the following action from 5.8.1 :

y = (S f) X (% _0P> X (CL; (1)) (5.8.13)

LMLY — LPCT +CPTLT —LP
By identification with 5.8.6, we can deduce that!3:
M =LML" — LPCT + CPTL" and P =LP (5.8.15)

What then is the meaning of the different components of the space of moments'*?

uw={M,P}={l,g,p,E} (5.8.16)

M is the moment matrix associated with y and P is the energy-momentum vector.
[ is the angular momentum of M, g is the relativistic barycenter of M, p is the linear
momentum of P and FE is the energy of P.

In Chapter 5 of [72], J.M. Souriau develops a method of geometric quantization that
leads to the quantization of spin, considered as a geometric attribute!®.

h
s =ng (5.8.17)

Thus, we obtain a description of particles in their space of moment, with different
spin values.

The mass is defined on page 1886 as follows:

m =V PT . P sgn(F) (5.8.18)

13(13.107) of [72]
14(13.57) of [72]
15(18.82) of [72]
16(14.57) of [72]
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Time and Energy Inversion

The elements of the Lorentz group act on points in spacetime that constitute a move-
ment. By acting an element L of the Lorentz group on a given movement, we obtain
another movement.

As mentioned through expression 5.2.5, the Lorentz group has four connected com-
ponents.

The neutral component Lor, is a subgroup containing the identity matrix that in-
verts neither space nor time.

Consider the 4-component matrix w made up of two parameters A\; and A;:

Wor) T [ g g A, 0 with {)\2 _ (5.8.19)
0 0 0 X

Thus, the four components of the Lorentz group can be easily expressed using the
four possible combinations of these two parameters applied to its neutral component,
of which an element L, € Lor, is expressed according to the expression L = wLl,:

1000 1 0 0 0
0100 0 -1 0 O
Wy X Ly = 0010 |€ Lor, W(i,—1) X Lp = 0 0 -1 0 € Lor,
0001 0 0 0 -1
-1 0 0 0 -1 0 0 O
0 100 0 -1 0 0
W(-1,1) X L, = 0 010 € Lor, W(-1,-1) X L, = 0 0 -1 0 € Lorg
0 0 01 o 0 0 -1
(5.8.20)
We note that Ay = —1 inverts time while Ay = —1 inverts space. The four compo-

nents are grouped into two subsets “orthochronous” and “retrochronous” according to
the respective expressions 5.2.6 and 5.2.7.

The Poincaré group can then be written according to these four connected compo-
nents as follows:

g = {( “5" (17 ) swLy, € Lor ANC € R1’3} (5.8.21)

Thus, the action of this Poincaré group on the spacetime coordinates yields the
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following space of movements:

[wOLn ﬂ y [ﬂ _ [wLn€1+C] _ (5.8.22)

In fact, this is the action of the Poincaré group on its space of moments g having
ten independent scalars:

e The energy E

e The momentum p = {pmapyap?«’}

e The passage f = {fs, fy, [-}
e The spin s = {l,,,,[.}

The action of the Poincaré group on the dual of its Lie algebra is the coadjoint
action on its space of moments M (passage f and spin s) and the energy-momentum
vector P (energy E and momentum p), which yields:

M = (wL,)M(wL,)" — (wL,)PCT + CPY(wL,)" et P = (wL,)P  (58.23)

To highlight the effects of the symmetries P, T, and PT on {E,p, f,s}, we will
choose the simplest possible action, where there is no translation in spacetime, so that
the vector C cancels out and L,, = 1'":

M = [W(AQ,M)]M[W(ALM)]T et P'= [W(AQ,M)]P (5'8'24)

Now, consider for example the symmetry 7', where there is only a time inversion
(A1 = —1), without space inversion (A = 1), in a case where there is also no translation
in spacetime (C' = 0). We thus have:

W(,-1) X Ln = Lt (5825)
Hence:
1 00 O T x
1 010 O y | | v
Ly x¢= 001 0 12 1=1 .| (5.8.26)
000 —1 t -t

Thus, we obtain the action of time inversion in the space of trajectories or in space-
time.

"The matrix W(xs,\,) 18 here expressed according to a 4D spacetime convention noted {x, y, z, t}
instead of the usual relativity convention {t, x, y, z} that we use elsewhere, in order to align with the
graphical and matrix representations of M and P shown previously.
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Let’s determine the coadjoint action, that is, the action of the group on its space of
moments according to 5.8.10:

100 O 0 L I, f 1 00 0
r_ r | 010 O l, 0 =l fy 010 O
M=LMLi=149 091 o ~l, L. 0 f 001 0
000 —1 —fx —fy, —f. O 000 —
(5.8.27)
Hence :
o - L, —f
; l, 0 =l —f
fo fy f2 0
On the other hand, we have:
1 00 O Da Da
;o 1010 O py | | Py
P=LP=1,0,1 0 P Il (5.8.29)
000 —1 E -F

Thus, we can deduce that the application of the L, component of the Lorentz group
to the movement of a particle induces an inversion of its energy from E to -F and its
passage from f to -f.

The T symmetry applied to the movement of a particle thus inverts its energy (page
189-193 of [72]).

The same process can be applied to the 4 connected components of the Lorentz
group and we will discover that:

e Symmetry P: the momentum and passage are inverted. The energy and spin
remain unchanged.

e Symmetry T: the energy and passage are inverted. The momentum and spin
remain unchanged.

e Symmetry PT: the momentum and energy are inverted. The passage and spin
remain unchanged.

No transformation changes the spin.
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Restricted Kaluza Group

Let’s apply an extension of the Poincaré group to form the following dynamic group:

10 ¢
g = 0 L C |, 0cRAL=AL,€LorAN)=+1NC€cRY (5.8.30)
00 1

Starting from Minkowski space:

_ (;) (5.8.31)

Let’s introduce Kaluza space'® that incorporates a 5 x 5 Gram matrix:

Nl K] o+

! O 1 0 0 0
oo 000 G 0 0 -1 0 0
'=fo 0o -1 0 0 :( ) where G =
0 -1 0 0 -1 0
00 0 -1 0 00 o0 1
00 0 0 -1
(5.8.32)

In the considered group, we just add a translation ¢ to the fifth dimension (. Thus,
the dimension of the group becomes 11 (section 5.5). It is the isometry group of Kaluza
space, defined by its metric:

ds? = dXTTdX = dt? — da? — dy? — dz? — d¢? (5.8.33)

- ()-

According to Noether’s theorem, this new symmetry is accompanied by the invari-
ance of a scalar that we will call g. The torsor of this Kaluza group then incorporates
an additional parameter:

With :

(5.8.34)

T IR S IS S T

p={M,Pq}t={l,9,p,E, q} (5.8.35)
Let’s introduce the action of the group on its Lie algebra:

7' =g 'Zg (5.8.36)

18Kaluza space is a hyperbolic Riemannian manifold with signature (+ — — — —)
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However, if we consider an element of the Lie algebra of this group:

0 0 d¢ 0 0 &¢
Z=10 Gw v| Z=[0 Gu ~ (5.8.37)
0 0 0 0 0 0

The inverse matrix of g ' gives :

1 0 ¢ 1 0 —¢
0 L C =10 L' —L7'C (5.8.38)
0 0 1 0 0 1
And :
0 0 6&¢ 1 0 ¢ 0 0 0
0 Gw 7~ 0 L C |=|0 GwL GwC+~ (5.8.39)
0 0 O 0 0 1 0 0 0
We can then calculate 5.8.36 as follows:
1 0 — 0 0 do¢ 1 0 ¢
Z' = 0 L' —L7'C 0 Gw v 0 L C (5.8.40)
0 O 1 0 0 0 0 0 1
Hence :

1 0 — 0 0 0p 0 0 0p
Z'=10 L7 —-L7'C 0 GwL GuwC+~v | = 0 L'GwL L'GuwC+ L™ty
0 O 1 0 0 0 0 0 0

(5.8.41)
Then :
0 0 o&¢ 0 0 0
Z'=(0 G ~ | = 0 L'GwL L 'GwC+ L'y (5.8.42)
0 0 0 0 0 0
Thus, by identification, we can deduce :
1 1
§TT(M cw)+ PTGy + qigp = 5TT<M/ W)+ PTGy A+ ¢ (5.8.43)

For example, to find the inverse of a 2 x 2 matrix, we use the following formula when the matrix

is of the form:
a b
c d

The inverse is :
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This allows us to deduce the action of the following group:

¢ =q (5.8.44)
M' = LMLT — LPCT + CPTLT (5.8.45)
P —LP (5.8.46)

If we identify ¢ as the electric charge, this would show that the motion of a massive
particle in a five-dimensional space would transform it into an electrically charged
particle.

Restricted Janus Group

Consider the following dynamic group:

0 ¢
L C |, u=+1ANpeRAL=AL, € LorANXA=F1AC R
0 1

@
Il
o oxr

(5.8.47)
The action of the group on the coordinates of the 5-dimensional spacetime defined
by 5.8.34 yields the space of the following motions:

p 0 ¢ ¢ pg + ¢
0 L C ¢l =| Le+cC (5.8.48)
00 1 1 1

A similar calculation to the previous one yields the action of the group:

q =g (5.8.49)

M =LML" — LPCT + CPTL" (5.8.50)

P =LP (5.8.51)

This group acts on the five-dimensional Kaluza space. We observe that y = —1

reverses the fifth dimension ¢ and the scalar q.

Through a dynamic interpretation of the group, we find the idea suggested by J.M.
Souriau |72|: the inversion of the fifth dimension is associated with the inversion of
electric charge. However, this is only one of the quantum charges.

Indeed, the C-Symmetry translating the "Matter- Antimatter” symmetry introduced
by Dirac, reverses all quantum charges. This inversion operation is only obtained by
adding as many compactified dimensions as there are quantum charges. The action
of the group on the coordinates of n-dimensional spacetime yields the space of the
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following motions:

1
w00 06\ (¢ uct + ¢!
0 u 0 N s u + &
00 0 Ll = : (5.8.52)
Lo e || HeP + g7
00 -+ 0 L C § LE+C
0oo0 --- 0 0 1 1 1
The torsor of this group incorporates several additional scalars ¢”:
p .
p={MPY ¢}={lgp.E. ¢, ¢ ...¢"} (5.8.53)
1
This allows us to obtain the action of the group on its momentum space:
= g (5.8.54)
= gt (5.8.55)
. (5.8.56)
q" = pg® (5.8.57)
M =LML" — LPCT + CPTL" (5.8.58)
P =LP (5.8.59)

Moreover, Souriau considers that electric charge can be geometrically quantized into
discrete values (+e,0, —e) when the associated fifth dimension is closed.

Imagine representing motion in Minkowski space along a simple straight line oriented

in time. At each point, we add a closed dimension, which extends Minkowski space into
a bundle. In the didactic figure 5.1, it is represented as a cylinder.
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Figure 5.1: Inversion of the winding direction of a particle’s motion reflecting the
symmetry C

Janus Dynamic Group

As studied in section 5.6, if we introduce a new symmetry to the previous group,
which we can call PT Symmetry allowing the conversion of matter into antimatter with
negative mass?’, we thus combine C Symmetry and PT to form the Janus Dynamic
Group?! as follows:

A 0 @
g = 0 M, C |, \MNpe{-1,1}A¢pERAL, € Lor, N\C €R™ } (5.8.60)
0 0 1

We can consider that particles of matter and antimatter can coexist in the same
space sheet. However, no coexistence is possible for the motion of particles deduced by
T-symmetry (or PT-symmetry).

This space is of dimension 4 4 p (for p quantum charges).

We will therefore consider the two-sheet covering of this manifold M,,,.

20A concept we could call antimatter in the sense of Feynman
2l'Whose general form is given by 5.6.1
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In each of these two sheets, there remains a possibility to perform the symmetry
corresponding to u = —1, that is, the inversion of all quantum charges.

In other words, the "Matter-Antimatter” duality exists in both sheets.

To understand the nature of the different components of these sheets, we will con-
sider the motion of a particle of matter with energy and mass:

e By acting on this motion with elements of the group corresponding to (A = 1; u =
1), we will obtain other motions of particles of matter with positive mass and en-

ergy.

e By acting on this motion with elements of the group corresponding to (A = 1; u =
—1), we will obtain other motions of antimatter particles with positive mass and
energy?2.

e By acting on this motion with elements of the group corresponding to (A =
—1;u = 1), we will obtain other motions of particles of matter with negative
mass and energy.

e By acting on this motion with elements of the group corresponding to (A =
—1;u = —1), we will obtain other motions of antimatter particles with negative
mass and energy?.

Its isometry group is that of Janus space, defined by the same metric as structuring
Kaluza space 5.8.33, and its dimension is 1124, The torsor of the group is also the same
as 9.8.35.

However, if we consider an element of the Lie algebra of this group:

0 0 66
Z=|[0 ANGw ~ (5.8.61)
0 O 1

22 These are "antimatter in the sense of Dirac” (C-symmetry).

ZThese are "antimatter in the sense of Feynman" (PT-symmetry).

2410 + 1 dimension associated with the fifth space dimension ¢ that J.M. Souriau identifies with the
electric charge q.
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The inverse matrix of ¢ (5.8.60) yields:
Moo 0 6\ ! M0 —Aud
0 AL, C = 0 MLV —ALj'C
0 0 1 0 0 1
And :
0 0 do A 0 @ 0 0 Y0)
0 AGw v 0 M, C | =10 MNGwL, \GwC +~
0 0 0 0 0 1 0 0 0
We can then calculate 5.8.36 as follows:
A0 ) 0 0 Y0,
7' = 0 ML;! —)AL;'C 0 MNGwL, AGwC +~
0 0 1 0 0 0
Hence :
0 0 & 0 0 (A)oo
Z'=10 AGW' + | = 0 NL'GwL, NL,'GwC + \L;'y
0 0 1 0 0 0
Thus, by identification, we can deduce:
0¢" = Moo
W' = NGL,'GwL,
v = XL 'GwC + ALty
However :
L' =GLlG
Then?® :
8¢ = A\udg
W' =NLTwL,

v = NGLIwC + N\GLTGy

(5.8.62)
(5.8.63)
(5.8.64)

(5.8.65)

(5.8.66)
(5.8.67)
(5.8.68)
(5.8.69)

(5.8.70)

(5.8.71)

However, inspired by J.M. Souriau, we could add as many additional closed dimen-

sions as quantum charges and write the dynamic group as follows:

M 0 0 - 0 ¢!
0 A 0 - 0 ¢?
0o 0 - 0
P A 0 ¢P
0 0 0 AL, C
0 0 0 0 1

25GG=I (Identity matrix)
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The isometry group of this space can be defined by the following metric:
ds® = (dt)* — (dz)? — (dy)? — (dz)* — (d¢')? — (d¢*)? — ... — (d¢P)? (5.8.73)
With :

N e 8y o+

(5.8.74)

S
Il
S
I I
~__
Il
"
N =

¢P
The action of this Janus group on the coordinates of 10 + p dimensional spacetime
then yields the space of the following motions:

AM 0 0 0 ¢1 Cl )‘MC1+¢1

0 )‘/J’ o .- 0 ¢2 CQ )‘MC2+¢2

00 : = ‘ (5.8.75)
D Y R 4 ¢P AuC? + ¢F

o 0 --- 0 A, C £ AL+ C

o 0 --- 0 0 1 1 1

According to Noether’s theorem, this new symmetry is accompanied by the in-
variance of additional scalars ¢P. Therefore, the torsor of the group integrates them
according to this relation:

P
p={MP> ¢}={lg.p.E.q. ¢ ...¢"'} (5.8.76)
1
Thus, the duality relation?® gives us:
1 P 1 T LA
T i ! / / / "
ST (M - w) + PT G7+5¢21:q = ST (M) + P7 - Gy +5¢leq (5.8.77)
This allows us to deduce the action of the group by identification with 5.8.71:

p ) p '
Yot = ) ¢ (5.8.78)
1 1

M =LML" — LPCT + CPTL" (5.8.79)
P =LP (5.8.80)

26(13.58) from [72]
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Chapter 6

Alternative Interpretation of the
Wormbhole Model Coupled with a
White Fountain as a One-Way
Membrane

The study of the exterior metric developed by K. Schwarzschild in 1916, as a solution to
Einstein’s equation in vacuum, reveals the introduction of a hypothesis : the invariance
by time symmetry of ¢ — —t, commonly called "staticity". This hypothesis, lacking
a proven physical basis at the time, led to the elimination of a cross term drdt in the
metric. Thus, an arbitrary choice of coordinates was made, specifically marked by the
absence of this cross term drdt. This study aims to explore the physical possibilities
of a new approach based on the introduction of a drdt cross term in the metric and
to highlight the possibility of building a model of a Wormhole coupled with a White
Fountain as a One-Way Membrane, connecting two semi-Riemannian P7T-symmetric
spaces through a "bridge” that can be crossed only in one direction.

6.1 Solutions of Einstein’s Equation Reflecting Differ-
ent Topologies
In 1916, Karl Schwarzschild successively published two papers ([69],[68]). The first one

presented the construction of the solution to Einstein’s equation in vacuum, based on
the following assumptions:

e Stationarity: Independence of the metric terms with respect to the time coordi-
nate!.

e Isotropy and spherical symmetry?.

Invariance by time translation.
YInvariance by SO(3).
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e Absence of the drdt cross term.
e Lorentzian at infinity.

He rapidly completed this solution, called the exterior Schwarzschild metric, with an
interior metric |68] describing the geometry inside a sphere filled with a fluid of constant
density p, and solution to Einstein’s equation with a second member. The conditions
for connecting the two metrics (Continuity of geodesics) were ensured. The phenomena
of the advance of Mercury’s perihelion and gravitational lensing confirm this solution
(Figure 3.3). K. Schwarzschild worked to ensure that the conditions governing these
two metrics were in accordance with physical reality.

As an example, in the present day, neutron stars, owing to their staggering density
and formidable mass, stand as natural cosmic laboratories, probing realms of density
and gravity unreachable within terrestrial laboratories. Let us consider two distinct
ways through which a neutron star might reach a state of physical criticality.

In a scenario where the star’s density, p,, remains constant, a characteristic radius
7 can be defined. Then, a physical criticality is reached when the star’s radius is :

8 [ 2
Ccry — —7 = 1.1
Her, \/;T 3tGp, (6.1.1)

with
[ 3c?
P= 6.1.2
" 8tGp, ( )
Thus,

e For the exterior metric, it was necessary that the radius of the star be less than
T
e As for the interior metric, the radius of the star had to be less than R, because

a larger radius leads the pressure to rise to infinity at the center of the star.

Next, for massive stars, an imploding iron sphere can present a complex scenario.
Assuming the sphere’s mass M is conserved during implosion, we must consider two
important critical radius :

e In the core part, the geometric criticality radius is given by the Schwarzschild

Radius which is: oM
Re, = R, = 2—2 (6.1.3)
c

e Qutside of this mass, the physical critical radius is given by 6.1.1
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With mass conservation expressed as M = §WR3po, we can explore how the variable

density p, during implosion impacts these critical radius.

Indeed, if physical criticality is reached during implosion, we have R = R, .
Then, substituting the mass conservation equation into 6.1.1, we get, :

GM

c2

R = R, =2.25 > Rer, (6.1.4)
We can deduce that if the physical criticality is reached for a mass M, then it occurs
before geometric criticality appears.

K. Schwarzschild also emphasized that the measurements pertained to conditions
far exceeding what was understood within the framework of the astrophysical reality of
his time.

It is also important to note that the topology of this geometric solution is built by
connecting two bounded manifolds along their common boundary, a sphere S? with an
area of 47 R? (R, is the radius of the star).

In 1916, Ludwig Flamm considered the external solution as describing potentially
a geometric object. The concern was then an attempt to describe masses as a non-
contractible region of space (|27]).

In 1934, Richard Tolman was the first to consider a possible handling of the most
general metric solution introducing a cross term drd¢. However, for the sake of simpli-
fication, he immediately eliminated it using a simple change of variable (|76]).

In 1935, Einstein and Rosen proposed, within the framework of a geometric modeling
of particles, a non-contractible geometric structure, through the following coordinate
change (|24]):

uw? =1 —2m (6.1.5)

The metric solution then becomes:

2

ds? = dt? — 4u?(u? + 2m)du® — (u* + 2m)?(d6?* + sin® Hd¢?) (6.1.6)

u? +2m

The authors thus obtain a non-contractible geometric structure, termed a "space
bridge”, where a closed surface of area 4wa?, corresponding to the value u = 0, con-
nects two "sheets”: one corresponding to the values of u from 0 to +00 and the other
from —oo to 0. It is noteworthy that this metric is not Lorentzian at infinity. Although
this metric, expressed in this new coordinate system, is regular, the authors point out
that at the throat surface, its determinant becomes zero. In this geometric structure,
two bounded semi-Riemannian sheets are distinguished, the first corresponding to v > 0
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and the second to u < 0. It corresponds to their joining along their common boundary.
The overall spacetime does not fit within the standard framework of semi-Riemannian
geometry since it does not fulfill the requirement det(g,,) # 0 at the throat. As pointed
out in [74], it does fit within the more general framework of singular semi-Riemannian
geometry, which allows for degenerate metric tensors.

In 1939, Oppenheimer and Snyder, capitalizing on the complete decoupling between
proper time and the time experienced by a distant observer, in the absence of a cross
term in drdt, suggested using the external metric solution to describe the "freeze frame"
of the implosion of a massive star at the end of its life. By considering that the variable
t is identified with the proper time of a distant observer, it creates this "freeze frame"
pattern such as a collapse phenomenon whose duration, in proper time, measured in
days, seems for a distant observer to unfold in infinite time ([44]). This paper was
considered as the foundation of the black hole model.

In 1960, Kruskal extended the geometric solution to encompass a contractible space-
time, organized around a central singularity corresponding to r = 0. The geodesics are
extended for r < a. The black hole model (with spherical symmetry®) then takes its
definitive form as the implosion of a mass, in a brief moment, perceived as a "freeze-
frame" by a distant observer (|37|). The Schwarzschild sphere is then termed the "event
horizon".

In 1988, M. Morris and K. S. Thorne revisited this geometric interpretation by
abandoning contractibility, not to attempt to obtain a geometric modeling of the solu-
tion, but to study the possibility of interstellar travel, through "wormholes”, using the
following metric ([41]):

ds? = —2dt? + di2 + (b2 + 12)(d6? + sin? 0d¢?) (6.1.7)

By focusing their study on the feasibility of interstellar travel, the authors highlight
the enormous constraints associated with such geometry as well as its unstable and
transient nature.

6.2 The Hypothesis of Staticity: Absence of the drdt
Cross Term

The concept of "staticity" in general relativity refers to a stationary metric, that is,
invariant under time translation from t— -+t "time-independent" and static, meaning
invariant under "time reflection" symmetry from t—-¢, naturally leading to the absence

3In 1963, Roy Kerr constructed the stationary axisymmetric solution to Einstein’s equation in
vacuum. However, in this study, we limit ourselves to the interpretations of the stationary solution
with spherical symmetry (2.3.10).
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of the cross term drdt. Indeed, when a metric has a cross term drdt, it means there
is a mixed dependence between spatial and time coordinates. This mixed dependence
breaks the invariance by time reflection symmetry, as the metric does not remain the
same under the transformation ¢t—-t. R. Wald mentions in 1984 this particularity in
his book "General Relativity" on page 120 |78]|.

We can also note that on page 186 of [1], the requirement of time reflection symmetry
for a dz° line that can be traced "backward" to —dza° (referred to as "staticity") is set
as an initial hypothesis.

Indeed, the notion of staticity in the sense of R. Wald refers to an invariance by
time reflection symmetry of t — —t, which is a purely mathematical hypothesis without
physical meaning. However, our study offers a different approach from this hypothesis.

6.3 Construction of a Lorentzian Geometric Solution
at Infinity with Two Sheets

Let us consider the exterior Schwarzschild metric in its classical form under the signature
(==

1
ds? — (1 _ 9) 2dt? — (1 . 3) dr? — 12(d6? + sin? 0de?) (6.3.1)
T T

6.3.1 T-Symmetry

This metric built in 1916 (|69]), as a solution to Einstein’s equation in vacuum, was
endowed with an additional hypothesis, which its author did not mention, that of in-
variance by time symmetry. It is important to note that this hypothesis has no physical
basis and results in the elimination of a cross term drdf in the metric, as Tolman had
envisaged as early as 1934 (Page 239 of [76]).

Conversely, A. Eddington introduced it with the aim of eliminating the coordinate
singularity at the Schwarzschild surface in r = «, using the variable change (|23],|36]):

a. |r

tjg:t—i—zln‘a—l‘ (6.3.2)

The metric becomes:

2
ds? = (1= %) @arf” = (14 %) dr? = Zdrdef — 2 (462 + sin?0dg®)  (63.3)
r r r

We know that under these conditions, from the point of view of a distant observer,
the free fall time is finite 6.3.2, whereas the escape time remains infinite. The metric for
which the escape time is finite will be obtained by performing this change of variable:

o r
to=—t——1 ’——1‘ 6.3.4
E - n o ( )
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This is equivalent to inverting the time coordinate in p.3.3] Thus, this choice of
associating two metrics describing two semi-Riemannian spaces leads us to consider a
global geometric solution of two T-symmetric sheets connected by a "bridge” in this
particular coordinate system as well as in the coordinate system of Einstein and Rosen
(126]).

Now, let us demonstrate that these transformations are also accompanied by a P-
symanetry.

6.3.2 P-Symmetry

In this representation, the radial geodesics of the first sheet are orthogonal to the tangent
plane at the "space bridge” when they reach it. These same geodesics, emerging in the
second sheet, are also orthogonal to this same tangent plane. Let’s now consider four
points forming a tetrahedron. which converge towards the "space bridge” along radial
trajectories. We can set a 3D orientation by defining a direction of traversal of the
points on each of the equilateral triangles forming the tetrahedron. With respect to the
coordinate r, it seems as if these points bounce off a rigid surface. leading to an inversion
of the orientation of the tetrahedron. The upstream and downstream tetrahedra then

become enantiomorphic (Figure 6.1).

* B
A e
throat C
throat 2-surface throat
2-surface 2-surface

Figure 6.1: Inversion of space when crossing the "space bridge"”

( J.P. Petit )

The change of orientation is already visible in the simplified 2-dimensional represen-
tation of a wormbhole in Figure Let us look at this figure from above, and imagine
a triangle gliding on the surface of the top sheet toward the throat. After crossing
the throat, the triangle starts gliding on the bottom sheet and we now see it upside
now from our position above the top sheet. From our point of view, its orientation has
therefore changed. The physical meaning of this change of orientation will be discussed

in Section
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therefore changed. The physical meaning of this change of orientation will be discussed

in Section 6.3.3.

—
Q
-

our universe

throat of
wormhole

other
universe

/& rsing
(b) ¥ COS ¢

our universe—_ Z region near earth
/ ! ‘ g
v
NS ] \
C — \\74 region near
the star
Vega
rsin
rcos¢ ?

Figure 6.2: Page 396 of the article by M. Morris and K.S. Thorne (1988)

The geometric structure of the pair of metrics 6.1.6 and 6.3.1 thus represents a

"bridge” connecting two PT-symmetric semi-Riemannian spaces.

The element of this 2D-surface is then given by:

\/ | det(guw)| = \/ |960906] = o sin(0)

(6.3.6)

As this metric describes a 2D-surface sphere (like a sphere of constant radius in a

4D spacetime), then the differential area element is given by :

dA = /| det(g,,)|d0d¢ = o®sin(0)ddde

(6.3.7)

To find the minimal area of this "space bridge”, we must integrate this area element
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over all possible angles :

2 7r
A= / / a?sin(#)dfd¢ = 4ra? (6.3.8)
o Jo

It’s therefore non-contractible with a minimal area of 4ma?.

6.3.3 Identification of the Two Sheets

In Section 6.3.2 we have described the change of orientation of a tetrahedron crossing the
wormhole throat in Figure 6.1, and of a triangle crossing the throat in Figure 6.2. The
change of orientation of the triangle is only visible for a person looking at Figure 6.2 in
its entirety. Therefore, it does not correspond to any physically observable phenomenon
since any physical observer must be located on one of the two sheets and cannot see
directly the other sheet. The situation is the same in Figure 6.1 : The middle picture
represents the situation from a point of view where we could look simultaneously at
the two sides of the wormhole (B and C have not reached the throat yet, while A has
already crossed it and emerges on the other side). This is again impossible for a physical
observer: it seems that the P-symmetry as described so far does not correspond to any
physically observable phenomenon. We can however give it a real physical meaning
with an additional ingredient introduced by Einstein and Rosen [24].

Recall that their motivation was not to investigate interstellar travel as in Figure 6.2,
but to describe elementary particles by solutions to the equations of general relativity.
Quoting from the abstract of their paper: "These solutions involve the mathematical
representation of physical space by a space of two identical sheets, a particle being rep-
resented by a "bridge” connecting these sheets.” Einstein and Rosen also suggest that
the multi-particle problem might be studied by similar methods, but this work is not
carried out in their paper.

Quoting again from |24] : "If several particles are present, this case corresponds to
finding a solution without singularities of the modified Eqs. (3a), the solution represent-
ing a space with two congruent sheets connected by several discrete "bridges.”"” From
their point of view, two points in the mathematical representation 6.1.6 with identical
values of 6, ¢ but opposite values of u therefore correspond to two points in physical
space with the same value of  (r = u>+m). If we make the same identification of points
with opposite values of u, the situation represented in the middle picture of Figure 6.1
can be seen by a physical observer. The P-symmetry described in Section 6.3.2 now
has a real physical meaning. We will elaborate on the interpretation of the combined
PT-symmetry in the next section.

6.4 Another Representation of this Geometry

By performing the following change of variable to 6.3.3 and 6.3.5 :
r = a (1 4 Log ch(p)) (6.4.1)
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We obtain the following two metrics:

) log cosh(p) 9 1,42 2 + log cosh(p)
ds® = codty” —
1 + log cosh(p) 1 + log cosh(p)

> o tanh?(p)dp?

tanh(o) (6.4.2)
nh(p + 2 20102 1 win2 O] A2
—2 dpdty, —a”(1+1 h do od
C“C+m@mum)p & — 2(1 + log cosh(p) (62 + sin 60,?)
1 h 241 h
o = (Y e (BN
1 + log cosh(p) 1 + log cosh(p) (6.4.3)

tanh(p) 2 2
+ 2ca dpdty — a“(1 4 log cosh d6? 4 sin® Odp?
(Tt ) dpaty — a%(1 + og cosh () &)

Therefore, to obtain the metric that structures the second sheet for p < 0 in order
to ensure the continuity of the geodesics translating the transit of matter through the
"bridge” with a finite escape time on this sheet, we must apply the T-symmetry where
the time coordinate is reversed upon crossing?.

Those metrics, which are Lorentzian at infinity, structures two sheets corresponding
to p varying respectively from 0 to +o0o0 and —oo to 0. On the "space bridge” for p = 0,
the components g,; and g,, of the metric tensor disappear, leaving only the last two
spatial components ggg and g4, which are:

00 0 0
00 0 0

Juv = 0 0 —052 0 (644)
00 0 —a?sin®d

On this particular coordinate system, we can infer that its determinant is zero. The
P-symmetry arises from the fact that adjacent points, this time explicitly differentiated,
are inferred by p — —p. This transformation plays the same role as u — —wu in 6.1.6.

By associating these metric solutions under these two conditions, we would obtain
a Wormhole and a White Fountain as a One-Way Membrane, connecting two semi-
Riemannian spaces through a "bridge” that can be crossed only in one direction. Let
us assume further that the wormhole does not lead to another universe as in Fig-
ure 6.2.a, or to a distant point in the same universe as in Figure 6.2.b; but that the
two congruent sheets correspond to the same points in the physical universe through
the transformation u — —u (or p — —p), as suggested in [24] and in Section 6.3.3. We
can then conclude that the two sheets are PT-symmetric.

In the literature, the inversion of the time coordinate has been analyzed in various
ways. In particular:

=ty
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(i) According to the theory of dynamic groups by J-M Souriau (|70], |72]), where it
has been demonstrated to induce an energy inversion. Consequently, time reversal
transforms every motion of a particle of mass m into a motion of a particle of
mass —m ([43], page 191). On page 192 of the same book, the author offers an
alternative analysis which avoids negative masses. Souriau points out that these
alternatives should be judged according to their ability to explain experiments.

(ii) Feynman has offered an interpretation of antimatter as ordinary matter traveling
backward in time.

(iii) It is known from theoretical analysis (the CPT theorem) and from experiments
that elementary particles obey physical laws that are invariant under CPT-symmetry.

The PT-symmetry uncovered in Section 6.3 can be viewed as a CPT-symmetry followed
by a C-symmetry (inversion of electric charge). We would therefore obtain antimatter on
the second sheet. If the second sheet already contains ordinary matter, it could interact
with the antimatter coming from the first sheet and this would constitute a source of
energy, whose applications can be multiple, both ecologically, through the recycling
of radioactive waste for example, and in the energy or military sectors by producing
energy by converting 100% of the mass of interacting particles and antiparticles®.

6.5 Conclusion

We introduce a new geometric construction based on the stationary solution with spher-
ical symmetry of Einstein’s equation in vacuum, by limiting ourselves to the two only
hypotheses, inspired by physics : isotropy (invariance by SO(3)) and stationarity (in-
variance by time translation). In doing so, we do not add, as has been done previously
without any real physical justification, the invariance by "time reflection” symmetry
from ¢t — —t ("static" solution). This new set of less restrictive assumptions introduces
the presence of a cross term drdt¢, which the staticity assumption had previously pro-
hibited. This new geometric object behaves as a "One- Way Membrane”, an union of a
wormhole and a white fountain through a "bridge”. With a Lorentzian metric at infin-
ity, this structure connects two PT-symmetric enantiomorphic semi-Riemannian spaces
with opposing time arrows. Therefore, this object corresponds to the two-sheets cover-
ing of a four-dimensional spacetime, presenting themselves as PT-symmetric, connected

5For instance, in the military sector, to quantify the difference between conventional nuclear
weapons and “antimatter weapons,” consider that in nuclear weapons, only a small fraction of the
mass is converted into energy. For example, in the bomb dropped on Hiroshima, less than one gram
of matter was actually converted into energy to produce the explosion. In contrast, in a matter-
antimatter reaction, if 1 gram of matter meets 1 gram of antimatter, the entirety of this mass (i.e.,
2 grams) is converted into energy, following the relation 2.2.3, thus releasing a considerably larger
amount of energy. To put this into perspective, 1 gram of matter in contact with 1 gram of antimatter
would release about 1.8 x 10'* joules of energy, which is comparable to the energy released by about
43 kilotons of TNT. For comparison, the atomic bomb dropped on Hiroshima had a yield of about 15
kilotons of TNT.
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along a "bridge”. Taking our inspiration from Einstein and Rosen, we have suggested
to represent a point in physical space by a pair of congruent points, one on each of
the two sheets. We have shown that this identification of congruent points should lead
to observable physical effects when an object crosses the space bridge between the two
sheets.

6.6 Application Domains

Civil Application

The application of matter-to-antimatter conversion in the field of ecology would offer an
innovative solution for the recycling of radioactive waste. It would be conceivable to re-
verse the mass of radioactive matter particles with positive mass into antiparticles with
negative mass through the application of PT symmetry. This revolutionary approach
would allow the transformation of radioactive waste into a clean® and abundant source
of energy, thus proposing a doubly beneficial solution: reducing radioactive pollution
and producing sustainable energy.

Nathalie Debergh has opened this field of research in relativistic quantum mechan-
ics, notably through the publication [21], which explores the emergence of negative
energy states by showing that anti-fermions” with positive energy and mass can be
transformed into anti-fermions with negative energy and mass by the linear and uni-
tary application of the two inversion operators 7" and P to the Dirac equation. She
was able to demonstrate that this application preserves the norm of the quantum state,
which is an essential property for physical transformations. This unitary approach has
thus allowed for the exploration of solutions to the Dirac equation that include negative
energies and masses in a manner consistent with the fundamental principles of quantum
field theory.

6Without neutron emission.

"Fermions are subatomic particles, meaning they are fundamental constituents of matter, smaller
than atoms. They follow a unique principle known as the Pauli Exclusion Principle, which states that
two fermions cannot occupy the same quantum state simultaneously. In other words, each fermion in
a system must be unique in terms of its quantum properties, such as its position, momentum, and
spin orientation. This rule is what allows atoms to form and structure themselves in complex ways,
leading to the vast diversity of matter in the universe. Fermions are also described by a statistical rule
known as Fermi-Dirac statistics, which predicts how they behave in groups at different temperatures.
This statistic helps to understand why matter behaves differently at the quantum scale compared to
our macroscopic daily experience. Among the fermions, we find quarks and leptons. Quarks combine
to form protons and neutrons, which make up the nuclei of atoms. Leptons include electrons, which
orbit around the atomic nucleus, as well as neutrinos, very light and weakly interacting elementary
particles. Together, quarks and leptons form ordinary matter.
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Military Application

The manipulation of matter antiparticles with positive mass in interaction with matter
particles of the same mass type through the application of C' symmetry could present
significant military interest. The energy released by matter-antimatter annihilation is
described by Einstein’s equation 2.2.3, illustrating the conversion of mass m into energy
E. This principle reveals that a small amount of matter can transform into a huge
amount of energy. During annihilation, the entire mass of the particles and antiparticles
converts into energy, primarily in the form of gamma radiation. Consequently, the
military application of this technology paves the way for the development of antimatter
weapons of unmatched power, far surpassing the destructive capabilities of conventional
nuclear weapons, while raising significant ethical and security questions.

Ethical and Security Considerations

The safe manipulation and storage of antimatter pose major challenges for its use in
both civilian and military contexts. The risks of accidents and the moral implications
of exploiting this technology, especially in a military context, would require the es-
tablishment of strict safety protocols and thorough reflection on the implications for
international law and disarmament agreements.

6.7 Appendix

Now, let us consider the case of matter transfer to a second layer of the universe,
wherein we are free to define the outgoing metric of the second sheet. By applying
the new variable change 6.7.1 to the Schwarzschild metric 6.3.1, struck with the sign
change of the integration constant o — —«, we can thus build a "repulsive” metric on
the second sheet:

@]
th=t+—1In
E C

.
r 1‘ 6.7.1
-+ (6.7.1)

It ensures the continuity of the geodesics from the first sheet to the second with a
finite free-fall time on the first and a finite escape time on the second.
The incoming metric structuring the first sheet becomes:

2
ds* = (1 + 2) Adth? — (1 - g) dr? — —acdrdt;g —r3(df* + sin® 0dp?)  (6.7.2)
T r r

And the outgoing metric structuring the second sheet becomes:

ds? = (1 n %) Rdtz? — (1 - %) dr? + %drth ~r2(d6? 4 sin? 0dy?)  (6.7.3)
Taking the general form:

ds? = (1 + %) Rdt, — (1 - %) dr? + 5%&@@ ~r2(d6? + sin20de?)  (6.7.4)
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where 0 = —1 for the metric structuring the first sheet and 6 = +1 for the outgoing
metric structuring the second sheet. Thus, as the two metrics are symmetric by time
inversion ¢ — —t, the continuity of the geodesics is assured from one sheet to the other
with a finite free-fall time on the first and a finite escape time on the second.

This implies that regular matter could potentially be converted into antimatter with
negative mass, which would then be transferred to a separate layer of the universe. This
process essentially involves the transformation of matter into antimatter with negative
mass. By combining this geometric solution with the previously developed solution in
Section 6.3, we can explore the feasibility of interstellar travel by exploiting the metric
properties of this second layer.
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Chapter 7

Topological Nature of the
Petit’s Janus Cosmological Model

7.1 Definition

Topology in cosmology refers to the study of the fundamental spatial properties of
the universe that remain invariant under continuous transformations. Unlike geometry,
which focuses on precise distances and angles. topology is more concerned with how
space is connected and structured on a large scale. It examines aspects such as connec-
tivity, continuity, and the boundaries of cosmic space, irrespective of its exact shape
and size.

In a cosmological context, topology helps to understand the overall structure of the
universe, including questions such as whether the universe is finite or infinite, whether
it has "edges" or is limitless, and whether it could be connected in non-trivial ways
(as in multi-connected universe models). This includes examining the large-scale shape
and structure of the universe, as determined by the distribution of galaxies, cosmic
background radiations, and other astrophysical observations.

Topology is particularly relevant for advanced cosmological models, like the Janus
Cosmological Model, as it provides a framework to explore concepts such as the multi-
layered universe, connectivity between different regions of space-time, and other non-
intuitive properties that may arise from advanced theoretical physics.

In summary, topology in cosmology is a powerful tool for exploring and understand-
ing the fundamental structure and nature of our universe, beyond the constraints of
classical geometry.

Before proceeding with this chapter, it is crucial to read and fully grasp the comic
book Topologicon |53|, written by Dr. Jean-Pierre Petit, which is freely accessible
through this website http://www.savoir-sans-frontieres.com/. This work popu-
larizes concepts of topology in connection with cosmology and general relativity. In-
deed, this chapter primarily deals with conceptual tools that are quite counterintuitive.
Therefore, a prior reading of this comic book is highly recommended for better under-
standing.
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7.2 Model of the Wormhole

Extending the new interpretation of the wormhole model discussed in the previous chap-
ter 6, we propose a deeper topological perspective in relation with general relativity.
For example, let’s consider the throat sphere S? that connects two layers of spacetime
through PT-symmetry. Could this configuration be analogous to a projective plane?
In topology, a projective plane is a non-orientable surface with unique properties, such
as lines that diverge at one point but rejoin on the opposite side. This suggests that
the connection between spacetime layers through the wormhole’s throat might defy the
traditional orientation of space, thus evoking the projective plane.

Our conjecture is based on the observation that the nullity of the metric determi-
nant on this surface would indicate a non-orientable nature in 2D. If this throat sphere
is closed and has a limited surface area, it could be identified with a projective plane
P?. Although this idea may seem counterintuitive, it arises directly from the topology
of the object as described by Schwarzschild exterior solution 2.3.117.

In the context of general relativity, the concept of elementary volume in curved
spacetime is crucial. The elementary volume in n dimensions, defined by a Rieman-
nian metric, is given by dV = y/|det(g)| d"z, where g is the metric tensor and det(g)
its determinant. This elementary volume is not simply the product of coordinate dif-
ferentials, as in Euclidean space, but is instead modified by the curved structure of
spacetime. The factor \/|det(g)| reflects how spacetime is deformed by the presence
of mass and energy, according to Einstein’s equations. Thus, in regions of strong cur-
vature, this elementary volume can behave in non-intuitive ways, revealing fascinating
and sometimes surprising topological characteristics of spacetime.

Let’s revisit the sphere S2%, whose metric is defined by the expression:
ds* = o?(d6? + sin® 0dp?) (7.2.1)
The metric of a sphere is a mathematical function that describes the distances between

points on the sphere’s surface. As this metric describes a 2D-surface sphere (like a
sphere of constant radius in a 4D spacetime), then the differential area element is given

by:
dA = /| det(g,,)|d0de = o sin()dfde (7.2.2)

And it’s actually a surface element because a sphere is a two-dimensional surface in
three-dimensional space. When we integrate this surface element, we obtain the area
described by the expression:

2 I
A= / / a?sin(#)dfd¢ = 4ra? (7.2.3)
o Jo
1
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Which is the area of a sphere with radius . We can also observe that this surface
is analogous to that of a projective plane P?, a concept rarely addressed in standard
geometry.

7.3 Model of the Universe

In geometry, a sphere S? can be easily visualized because we can embed it in our familiar
three-dimensional space R3. However, a projective plane, such as P2, cannot be embed-
ded in the same way. The projective plane is a type of non-orientable surface, which
means it cannot be flattened out in three-dimensional space without self-intersection.
To visualize a projective plane, we need to use "immersion”, a method where the surface
self-intersects along a set of self-intersections. This concept challenges our traditional
understanding of shapes and spaces.

Understanding higher-dimensional projective planes, like P3? or P", requires us to
abandon visual representations and embrace abstract thinking. This mental shift is
necessary to explore complex topological structures that extend beyond our dimensions.

For example, turning a sphere inside out is conceivable if we consider each strip
forming the meridians that cover it as being able to intersect through "immersion”
to form a two-sheeted covering of a Mdbius strip with three half-twists ([40]). This
"self-intersection” effect is only linked to the immersion of this covering in our three-
dimensional representation space R?. We can then make the pole M of one sheet of this
sphere S? coincide with the opposite pole M’ of the other sheet of the same covering.
This is referred to as the "conjunction of antipodal points”. This transformation allows
the arrows of time, carried by the meridians of this sphere, to meet but in opposition
on each sheet of the same covering as on the next Figure 7.1.

Big Bang \/_\/

meridian
line

Big Crunch

maximum extent

Figure 7.1: Turning a Sphere Inside Out by Conjoining Antipodal Points
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NB : The Mdébius strip, or Mébius band, is a surface with only one side and one
edge. It is a classic mathematical object in topology, a branch of mathematics that
studies properties of spaces that remain invariant under continuous transformations.
The M&bius strip can be created by taking a strip of paper, giving it a half-twist, and
then joining the two ends of the strip together. This configuration results in a surface
that, if you start drawing a line along it, will return to its starting point after having
traversed both "sides” of the strip without ever lifting your pen. What makes the
Mobius strip fascinating is its non-orientable nature. In a normal space, like a sheet of
paper, there is a clear distinction between "top” and "bottom". However, on a Mobius
strip, this distinction doesn’t exist: as you traverse the surface, you seamlessly transi-
tion from top to bottom and back again. The Mobius strip is often used to illustrate
important concepts in topology and geometry, such as the idea of a one-sided surface
and the limits of our spatial intuition. In theoretical physics and cosmology, the Mdbius
strip can also serve as a model to explore complex spatial structures and phenomena
such as the twisting of space-time or the connection between different dimensions.

Thus, PT-symmetry can be interpreted as the traversal of a projective plane from
one sheet of the covering to the other (Figure 7.2).

First sheet Second sheet

P? Projective

Figure 7.2: P? Projective

For a geometric object to be equipped with a functional coordinate system, the non-
nullity of the determinant of its metric is then essential. Particularly, in the context
of "Gaussian coordinates”, this principle is crucial. In a four-dimensional space, this
requirement enables the foliation of space by a set of three-dimensional hypersurfaces.
These hypersurfaces are "orthogonal” to the geodesics, meaning perpendicular to the
paths a freely moving object would follow, and are characterized solely by the time co-
ordinate. The distinction between the "arrow of time" and "proper time" is important
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here: the arrow of time refers to a unidirectional temporal dimension, while proper time
is a measure of time specific to the observer.

In the context of the two-dimensional spacetime we are examining, the foliation is
performed using a series of circles. Each point on these circles can be associated with
a "time vector”, which is orthogonal to the circles. Orthogonality in this case means
that the time vector is positioned to be perpendicular to the surface of each circle, thus
forming a distinct temporal component of spacetime (7.3).

BIG BANG
S=

BIG CRUNCH

Figure 7.3: Illustration of the "Time Vector” Orthogonal to a Circle in a Family of
Circles Foliating a Sphere S?

Even in this case, this "object” has two singular points: its poles, where the azimuth
is undefined. These poles represent unavoidable "mesh singularities”. There are two
of them because the Euler-Poincaré characteristic of this object equals 2. For instance,
if we consider a simple polyhedron like a tetrahedron to represent an approximation of
the sphere, which is a pyramid with a triangular base, its Euler-Poincaré characteristic
is 4 (vertices) - 6 (edges) + 4 (faces) = 2. The Euler-Poincaré characteristic of a sphere
S™ equals 2 if n is even and zero if n is odd (6.3.3).

From our viewpoint, the universe would be an S* sphere with two singularities, the
Big Bang and the Big Crunch. A four-dimensional sphere S* is an analog of a regular
sphere, extending the concept into higher dimensions. Considering this sphere with its
two poles, the Big Bang and the Big Crunch, it can be foliated by "parallels” (similar
to parallel circles on a 2D surface S?). This foliation process involves creating layers, or
"slices", through the sphere, which are analogous to the lines of latitude on Earth. The
past-future orientation then becomes uniform everywhere. In this context, the past-
future orientation refers to the direction of time from the Big Bang to the Big Crunch,
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which becomes consistent throughout this foliated structure. Relative to this normal
to the parallel surfaces, spacetime is orientable, meaning that there is a well-defined
notion of "up” and "down" in the spacetime structure.

However, by "folding” this surface (whether S? or S*), we create a situation where
two parallels overlap. Folding in this sense means manipulating the structure of the
sphere in such a way that different parts of the surface come into contact. Their time
vectors then become antiparallel or opposed, as mentioned earlier. The time vector is
a way of representing the direction of time at each point in spacetime. When these
vectors become antiparallel, it signifies that the direction of time is reversed at the
points of contact. This leads to what we might call an "induced orientation”. Induced
orientation here refers to the new orientation of time vectors that results from the fold-
ing process. At every point in this spacetime, structured as a two-sheeted covering of
a Mobius strip with three half-twists (two-folds cover), the "antipodal matter” (both
spatial and temporal) appears "retrochronal”. A Mobius strip with three half-twists
is a one-sided surface that can be visualized by twisting a strip of paper three times
before joining the ends.

In Jean-Pierre Petit’s article [50], he considers the interaction of the universe with
the gravitational field created by its antipode, assuming that the laws of interaction
are:

1. Ordinary masses attract each other according to Newton.
2. "Antipodal” masses attract each other according to Newton.

3. Ordinary masses and "antipodal” masses repel each other according to an "anti-
Newton" law.

This hypothesis led him to "fold" the universe by giving it the topology of a "two-
sheeted covering” of a 2D surface.

Thus "folded”, the S? sphere (closed surface) becomes the covering of another closed
surface, the Boy’s surface, which has a single pole and whose Euler-Poincaré charac-
teristic equals 1 as on Figure 7.4. The Boy’s surface! is an unique 3D non-orientable
surface with only one face and one edge, featuring a singular point where all antipodal
points converge.

!The Boy’s surface is an example of a non-orientable 3D surface with only one face and one edge.
It is intriguing because, unlike the classical sphere, it has a singular point where all antipodal points
converge. This means that if you start drawing a line on the Boy’s surface, you will eventually return
to your starting point without ever having crossed an edge or used the other side, as there isn’t one.
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BIG BANG

BIG CRUNCH

Figure 7.4: The vicinity of the equator of a 2-Sphere and its location on a Boy’s surface

At this point, the Big Bang and the Big Crunch "coincide”.

A "tube” could then be envisioned in place of this polar singularity to connect these
two mesh singularities:

Figure 7.5: Boy’s surface after Sphere S? foliation and the K? Klein bottle at the right

The singular nature disappears, and the object then becomes the covering of a K?
Klein bottle, a non-orientable surface without distinct boundaries or interior, whose
Euler-Poincaré characteristic is zero, as illustrated in the Figure 7.5. The Klein bottle
is another non-orientable surface that neither has a distinct boundary nor an inte-
rior. Imagine a Mdbius strip whose edges are also joined together. Unlike the Boy’s
surface, the Klein bottle cannot be realized in our three-dimensional space without
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self-intersection. Its interest lies in its topological behavior, where "inside” and "out-
side" are not separate concepts, thus offering a useful representation for certain ideas
in topology and theoretical cosmology.

I believe the limitations in theoretical physics and cosmology during the 1950s can
be attributed to the field’s delay in embracing topology. Topology, the study of prop-
erties preserved through continuous deformations, could have provided new ways to
understand the fabric of the universe and its complex structures.
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About chapter 8

On the first two images of the hypermassive objects at the center of the
MZ&87 and Milky Way galaxies, which were immediately presented as
Giant Black Holes, appeared, Petit was struck by the fact that the central
parts of both objects were far from black. As the figures featire
coloured bars giving the “temperature equivalents” (although this
radiation is not of thermal origin, but synchrotron) he measures the
maximum and minimum values in these two images and obtains two
ratios surprisingly close to the value 3.

The specialist community replies that this central luminosity is due to a
cloud of hot gas in the foreground. But Petit retorts that the remarkable
proximity of these ratios to the value 3 can hardly be the result of
chance, given the very dissimilar mass and temperature values of the
two objects.

He then returned to the paper published by Karl Schwarzschild in
February 1916 (the second, just before his death), describing the
geometry inside a sphere filled with an incompressible material. The
article refers to physical criticality, with the temperature rising to
infinity. Petit then identifies the above-mentioned objects as subcritical
structures, proposing that their mass remains constant, with any
additional matter being immediately ejected from the object after
inversion.

This work has not yet been submitted for review. But we can expect

strong opposition from specialists, given that this theoretical approach
argues for the non-existence of black holes.

203 bis



Chapter 8

Alternative Interpretation of the

Supermassive Subcritical Objects
M87* and Sagittarius A*

The first images of supermassive objects located at the centers of galaxies, published in
the Astrophysical Journal, have been predominantly interpreted as representations of
giant black holes. This interpretation is grounded in the lack of widely accepted alter-
native explanations. This study reexamines these images, particularly those of objects
at the center of the M87 galaxy and the Milky Way. It highlights the possibility of sub-
critical supermassive entities, with radius only 5.72% shorter than the Schwarzschild
radius calculated from their masses. We will also see that the central parts of these
entities are darkened due to the gravitational redshift effect, represented by z+ 1. This
redshift is calculated as the ratio of the wavelength of light received by a distant ob-
server to that emitted from the surface, corresponding to the ratio of the maximum to
minimum observed temperatures from the center to the edge of these objects, a value
remarkably close to 3. We’ll explore the notion that their stability might result from
a balance between gravitational collapse, due to a physical criticality occurring long
before geometric criticality, and an extremely high radiative pressure at constant den-
sity emanating from their centers, proportional to the square of the speed of light - a
phenomenon initially considered by Karl Schwarzschild in his second paper published in
February 1916. Our analysis aims to enrich the understanding of supermassive objects
in galactic centers by proposing an alternative interpretation.

8.1 Introduction

The images of the two supermassive objects located at the center of the galaxies M87
and the Milky Way have sparked great media interest, being immediately dubbed "the
first images of giant black holes". These images were published in the prestigious
Astrophysical Journal (M87* |2] and Sagittarius A* at the center of the Milky Way
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[3]). Below, a bar connects the color shade to what is referred to as the "brightness
temperature":
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Figure 8.1: Images of M87* and Sagittarius A* objects

On this Figure 8.1, at the left, the first image of the object at the center of the M87
galaxy was published in 2019, showing minimal brightness temperatures of 1.8 billion
degrees and maximum temperatures of 5.7 billion degrees, with a ratio close to 3. Three
years later, in 2022, a second image at the right was published, showing minimal tem-
peratures of 4 billion degrees and maximum temperatures of 12 billion degrees, with
a ratio also close to 3. These two objects have vastly different masses, with the first
being 1625 times more massive than the second. It seems peculiar that, under these cir-
cumstances, for both objects, a hot gas cloud in the foreground exhibits characteristics
such that the ratio of maximum to minimum temperatures is so close to 3 in both cases.

Two new images of the object at the center of galaxy M87 were published in the
journal Astronomy € Astrophysics on January 18, 2024 ([4]), and we can observe in
Figure 8.2 a difference in the ratio of maximum to minimum brightness temperatures.
On the new image from April 11, 2017, the ratio between the maximum and minimum
brightness temperatures gives an approximate value of 3.4 (5.8 x 10°K divided by
1.7 x 10°K). Conversely, the image on the right, taken almost a year later, shows an
approximate temperature ratio of 4.8 (8 x 10° K divided by 1.7 x 10° K).

Despite the fact that the most recent observation of M87* shows a temperature
ratio very different from that calculated for the same object observed a year earlier,
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Figure 8.2: New images of object M87* published on January 18, 2024.

determining which of the two observations is more reliable requires thorough analysis.
This discrepancy can be attributed to several factors, ranging from the collection of
interferometric data to their subsequent processing. Indeed, these measurements de-
pend on the combination of signals from several radio telescopes spread over large dis-
tances. Measurement errors, atmospheric variations, differences in instrument calibra-
tion, and image reconstruction techniques can all contribute to the observed differences.
Nonetheless, the common point among all these observations is that the central part
of this celestial object always exhibits a temperature exceeding 1 billion degrees Kelvin.

If the image of a third object at the center of a new galaxy led to a temperature
ratio close to 3, it would be prudent to question the true nature of these objects.

The first images of supermassive objects located at the center of galaxies were
associated with giant black holes, and the non-perfectly black central part seems to
be due to the light emanating from a disk of hot gas orbiting around the black hole.
However, as we will see later in this study, a neutron star can reach criticality in two
scenarios:

e Abruptly, involving the sudden collapse of a supermassive star onto its iron core
before transforming into a supernova.

e More gradually, in binary systems, a subcritical neutron star slowly accumulates
mass by absorbing gas emitted by a companion star through a "stellar wind".
The critical mass at which it could potentially undergo further transformation
depends on the equation of state of the matter inside the neutron star and can
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vary. Typically, current models estimate that the critical mass required for fur-
ther transformation is approximately within the range of 2 to 3 times the solar
mass, near the Tolman-Oppenheimer-Volkoff limit.

The peculiarity of such a model is that the massive object must exhibit a bright-
ness temperature ratio of 3 between its corona and its center (maximum and minimum
temperatures). As we will demonstrate later, a more consistent alternative interpre-
tation would be to attribute the darkening of the central part of these objects to a
gravitational redshift effect, which slows down time near their horizon.

Indeed, a massive object curves the space-time around it, affecting the trajectory of
not only massive objects but also light. When a photon passes near such an object, its
path is bent due to this curvature of space-time, a phenomenon known as gravitational
lensing (See the figure 3.3). However, it’s not just the path of the photon that changes:
as it moves away from the massive object, the photon loses energy to escape the strong
gravitational field. This loss of energy results in a decrease in its frequency, which
extends its wavelength towards the red end of the light spectrum, a phenomenon known
as redshift.

To calculate the energy lost by a photon due to gravitational redshift, it is essential
to understand that a photon’s energy is directly related to its frequency f through the
equation E' = hf, where h is the Planck constant.

If we consider a photon emitted with a frequency f, and observed with a reduced
frequency f. due to gravitational redshift, the energy lost by the photon can be expressed
as the difference between the initial and final energies:

AE = h(fe - fr) (8'1'1)

Using the relationship between frequency and wavelength (f = §), where c is the
speed of light, this equation can be rewritten in terms of wavelengths:

1 1
AE =h _— 8.1.2
C(/\r Ae) (8.1.2)

And using the definition of redshift z = %, we can rearrange to obtain an ex-
e
pression in terms of z:

AE = he <ﬁ _ Ai) (8.1.3)
AE = —};—ec (1—Zm> (8.1.4)

This equation shows that the energy lost by a photon due to gravitational redshift
depends on the wavelength at which it was emitted and the value of the redshift z, with
the negative sign indicating a loss of energy.

This loss of energy is not merely apparent. For example, the cosmic microwave
background is the radiation that has undergone the greatest redshift, with a z factor of
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about 1,100, corresponding to a very low temperature and energy of around 3 Kelvin
(-270°C), much lower than the original energy (See the figure 3.9).

It is also important to note that the very thin and collimated jets observed in the
vicinity of supermassive objects indicate the presence of a strong magnetic field that
opposes the collapse of the object by exerting intense magnetic pressure against gravity.
These objects, like neutron stars at their maximum mass, are subcritical, resulting in
a gravitational redshift effect limited to 3. This suggests that these objects might be
subcritical massive objects.

In science, when an observation does not match the theory, the theory is typically
questioned. However, in this very recent article published in the Astrophysical Journal
|38], researchers modified the observations to align them with the black hole model.
They generated synthetic images of black holes by manipulating various parameters
such as mass, angular momentum, etc., and selecting the one that best matched the
observed data using the PRIMO software as on the Figure 8.3:

o 1 2 3 4 5 6
Brightness Temperature (10 K)

Figure 8.3: Synthetic image of the M87* black hole processed by PRIMO at the right
compared the original image at the left

The result was a confirmation of the theory, but it raises questions about scientific
rigor and research objectivity.
8.2 Alternative Interpretation of the Phenomenon

There is an alternative interpretation which is to attribute this color variation from
the center to the edge to a gravitational redshift, with z = 2, leading to a wavelength
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elongation by a factor of 1 + 2z = 3. What can we say about such objects?

8.2.1 Comparison of Physical & Geometric Criticalities

In the section 6.1, we examined Schwarzschild’s solutions to Einstein’s equations, high-
lighting the Schwarzschild exterior metric and the corresponding interior metric for a
fluid of constant density p,. These solutions were confirmed by phenomena such as the
advance of Mercury’s perihelion and the gravitational lensing phenomenon (Figure 3.3).
Karl Schwarzschild worked to ensure that the conditions governing these two metrics
were in accordance with physical reality.

In a scenario where the star’s density, p,, remains constant, a characteristic radius
7 can be defined. Indeed, if we consider the interior metric published by Schwarzschild
in his second article of February 1916 |68|:

ds? = (3 o XGZ_ o8 X> de? — 3 (dx? + sin® xd©® + sin® y sin® ©dP®?)  (8.2.1)
kpo

Schwarzschild considered the speed of light ¢ to be equal to one. Thus, the expression
3c?

%po should be written as e Then, K. Schwarzschild defined a constant x as being
equal to 8mk? "where k? is Gauss’ gravitational constant”, which then allows him to
introduce the characteristic radius #? that equals to Hipo and, which is also the radius
of the circle making up a part of the meridian of Flamm’s surface (|44]). Thus, the
equation 8.2.1 leads us to:

1s? — (3 cos Xa2_ cos X) de? — 72 (dx2 + sin? yd©? + sin? y sin® @d(IDQ) (8.2.2)

Then, as K. Schwarzschild uses the angle y to locate points inside the sphere, he
switches to the variable r by the application of the variable change r = 7 sin x, which al-
lows us to arrive at the modern form of the metric. Tolman provides a precise statement
in 1934 by giving the following ([76]):

2
ds? = — LQ (d@2 + sin? Gdgb

(8.2.3)
1— TQ L thZ
7"2 2 r2

Where r,, is the radius of the star and 7 is a stellar constant as a function of its
density p,. Note that it formulates the order of the terms, in the metric, according to
the signature (— — —+) but retains the signs of the respective terms.
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Let us consider a stationary observer (dr = df = d¢ = 0) located inside a star. The
metric becomes:

ds = cdr — [g _ (%) - %1 = (:—z)] cdt = f(r)dt (8.2.4)

where 7 is the proper time as seen by the stationary observer inside the star and
f(r) is the time factor.

Then, as seen on the section 6.1, when the time factor is null at the center of the

star, a physical criticality is reached before geometric criticality appears, when the star’s
radius is only 5.72% less than the critical radius 7 inferred from its density:

8 [ c?
= Rep, =\ =1 = 8.2.5
" ¢ \/;T 37TG[)0 ( )

8.2.2 Gravitational Redshift Near Physical Criticality

Next, the Schwarzschild solution was later taken up, in a different form, by Tolman
(|76]), Oppenheimer ([44|) and others (|1]), leading to the state equation, known as
Tolman—Oppenheimer—Volkoff (TOV) equation, presented in its differential form:

dp  p+p (‘“g_fprg i Gm_(r)) (1 _ M) - (8.2.6)

dr r2 c2 cr

Whose integrated value was given by Karl Schwarzschild a century earlier (see the
Figure 8.4), where in his second paper [68] published on February 1916, he describes
the geometry inside a sphere filled with an incompressible fluid of constant density py:

S [ 3cosy,—cosy SR
,Jr: o xFU 1N /J! .r‘ "_( 2 ) » jrl_-f:_,fq =1I. {2@]
2 CUS Y,
— e =R (30}

4 COS Yq— COS Y,

xp, \ "¢ . A
a=r= (: ) Ij t’l.ls',.fm('x_,— - s-ms',g,)——--z sm"g,l . A{31)

Figure 8.4: The pressure law obtained in 1916 by Karl Schwarzschild

In this formula, the speed of light is still adjusted to a unit value. Therefore, this

formula is equivalent to:
COS XY — COS Xq
p = poc? <3 X X ) (8.2.7)
COS Yq — COS X
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Next, as seen in Section 8.2.1, K. Schwarzschild switched to the variable r by the
following simple variable change:

r=Tsiny (8.2.8)

The pressure becomes zero at the star’s surface for y = x, with a radius given by:
Tq = TSN Xq (8.2.9)

The center of the star corresponds to x = 0, so the pressure becomes:

1 —cosy
= poc? [ —————22 8.2.10
b= poc <3cosxa — 1) ( )

This imposes a maximum limit on this radius for cos y, = %, meaning:

/8 ~
Ta = Rer, = r\/g ~ 0,94287 (8.2.11)
However, if we consider the mass corresponding to a physical criticality:

M.

I‘¢:

4
gmaspo (8.2.12)

and the one corresponding to a geometric criticality:

4
Mer, = 377300 (8.2.13)
we obtain the following relation:
3
8 2
MCrd, — (§> ]\4(31-,Y - 0'838MCI‘7 - 2.5Msolar (8214)

A value compatible with the masses of a few neutron stars that we have been able
to deduce directly from available observations and for which, Thorne, Wheeler, and
Misner have estimated in their book (page 611 of [75]) as the critical mass beyond
which the pressure escalates to infinity as on the Figure 8.5.

Of course, we will never have images of neutron stars comparable to objects located
at the center of M87 and the Milky Way. So, let’s calculate the gravitational redshift
effect 2+ 1 corresponding to massive celestial bodies near this physical criticality. This
effect impacts the light emitted from their surface in a radial direction toward a distant
observer, who will perceive it with an increased wavelength A,. It’s given by:

A1 (8.2.15)

211



CHAPTER 8. ALTERNATIVE INTERPRETATION OF THE SUPERMASSIVE
SUBCRITICAL OBJECTS M87* AND SAGITTARIUS A*

T T T T | ) ! 1 '
T tooccatr=0
20 - T
Pressure
i 4 1
3r?
p
10 ]
M = 0.838 (critical)
M = 0.804
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Figure 8.5: Variation of the pressure inside a neutron star of constant density

However, in the core part, the geometric criticality radius is defined by the Schwarzschild
Radius which is:

S
c? c?

2G M., 2G (4 3
26 Mer, 26 <§m§p0> _87Gpo 5 T (8.2.16)

Then, the gravitational redshift will give:

Ar 1 1

1
_— = = = :3
Y o Y N

This is precisely the value deduced from the ratio of maximum to minimum temper-
ature of the first two images of black holes located at the centers of the M87 galaxy and
the Milky Way. Thus, the images of these supermassive objects might also correspond
to subcritical entities, where the pressure at their center — defined as a density of energy
per unit volume — would be either infinite or at least extremely high.

(8.2.17)

RUNS
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8.2.3 Variation of Light Speed & Pressure in Constant Density
Plasmas

Now, let’s consider a fluid (hydrogen plasma) with an assumed constant density. At a
temperature below 3000°C, the pressure inside it is given by:

_ pov”

3

p (8.2.18)

where v is the average thermal agitation speed of the particles composing the plasma
(|16]). Thus, the reasoning that "if the pressure p tends to infinity, then this velocity
should also tend to infinity, which is in contradiction with a central principle of special
relativity, the "principle of causality”, stating that no physical effect can propagate at a
speed v > ¢" ([75]), would lead to a physical aberration.

Nevertheless, in this region of space-time, the pressure within this plasma becomes
radiative:
2
c
p =25 (8.2.19)
3
If we consider increasing this radiative pressure at a constant density, it can only
be achieved by considering a variation of the speed of light in the medium, something
Karl Schwarzschild was the first to consider [68]:

Die Lichtgeschwindigkeit in unserer Kugel wird:

2

v = - (44)

g &1
3 COS Y, — COS Y/,

Figure 8.6: Variation of the speed of light in a sphere of constant density

Thus, as he pointed out in his paper, the increase in the speed of light follows the
increase in pressure. What happens when this pressure rises, as does the value of the
speed of light 7 Simple, it’s clear according to Karl Schwarzschild (page 433 of [68])
that these two quantities become infinite for cos y, = %, which is to be done for r = R,
(8.2.11) as seen in Section 8.2.2.

We can deduce, according to Karl Schwarzschild study, that the stability of those
supermassive subcritical objects is due to the fact that the gravitational collapse, due
to the physical criticality occurring long before the geometric criticality, is compensated
by an extremely high radiative pressure at constant density coming from their centers,
proportional to the square of the speed of light.
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Abstract The standard cosmological model, based on Cold
Dark Matter and Dark Energy (ACDM), faces several chal-
lenges. Among these is the need to adjust the scenario to
account for the presence of vast voids in the large-scale struc-
ture of the universe, as well as the early formation of the
first stars and galaxies. Additionally, the observed matter—
antimatter asymmetry in the universe remains an unresolved
issue. To address this latter question, Andrei Sakharov pro-
posed a twin universe model in 1967. Building upon this
idea and introducing interactions between these two universe
sheets through a bimetric model, we propose an alternative
interpretation of the large-scale structure of the universe,
including its voids and the acceleration of cosmic expansion.
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1 Introduction

Between 1967 and 1980, the physicist Andrei Sakharov pub-
lished several papers [18—20] in which he presented a cosmo-
logical model with two universes, connected by an initial sin-
gularity: the Big Bang. The first universe corresponds to ours,
while the second is described by Sakharov as a twin universe.
The “arrows of time” of these two universes are antiparallel,
and they are “enantiomorphic”, that is, mirrored. Through
this model, Sakharov proposed a possible explanation for the
apparent absence of primordial antimatter in our universe.

For more than half a century, cosmology has been unable
to solve one of its greatest enigmas: not only has no con-
vincing explanation been found as to why one particle of
matter in a million escaped total annihilation with antimat-
ter, but no significant observation of a corresponding amount
of primordial antimatter has been made.

Sakharov was interested in the violation of CP-symmetry,
a fundamental property of the laws of physics, and hypoth-
esized that a twin universe, where these violations would be
reversed, could exist. This model would thus restore a gen-
eralized symmetry on a large scale. Based on the fact that
matter is formed from the assembly of quarks and antimat-
ter from antiquarks, he supposed that in our universe, the
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reaction leading to the formation of matter would have been
slightly faster than the one leading to the formation of anti-
matter, while the inverse situation would occur in the twin
universe.

Thus, in our matter-dominated universe, there would
remain a small surplus of matter, accompanied by an equiv-
alent amount of free antiquarks. Symmetrically, in the twin
universe, one would find antimatter with a corresponding sur-
plus of free quarks. Although this model may seem exotic,
it nevertheless offers the only theoretical explanation pro-
posed so far to account for the disappearance of half of the
predicted cosmic content. Consequently, it seems legitimate
to examine in detail the aspects and implications of such a
model.

This article revisits the pioneering work of Andrei Sakharov
and proposes a new cosmological model, inspired by his
approach, in which two folds of the universe are connected
by the same initial singularity, folded over one another and
interacting through gravitational effects. It puts this work
in perspective with modern concepts to address some of the
challenges posed by the standard cosmological model, partic-
ularly those of the ACDM model. This model offers potential
explanations for phenomena such as the acceleration of cos-
mic expansion or the existence of large-scale structures like
cosmic voids.

Our paper is structured around several key sections. The
first explores T-symmetry, which corresponds to time rever-
sal, based on the mathematical framework of the Poincaré
group. This symmetry is related to the existence of particles
with negative mass and energy, at the core of the bimetri-
cal Janus model, inspired by the work of J.-M. Souriau. It
plays a central role in the dynamics of this double spacetime,
where time reversal opens the door to a new interpretation of
physical phenomena [22,24].

Next, C-symmetry, associated with charge conjugation,
is extended within the framework of an additional dimen-
sion through the Kaluza—Klein model. This extension allows
the interpretation of electric charge as a geometric compo-
nent, in accordance with Noether’s theorem. This connection
between the extra dimension and charge conservation offers
a new perspective on charged particles in a five-dimensional
spacetime, where charge naturally emerges from geometry
[24].

The model is enriched by the introduction of the Janus
restricted group, which extends the Kaluza space to sev-
eral compactified dimensions. This dynamic group links
the matter—antimatter symmetry (C-symmetry) to the inver-
sion of quantum charges in a multidimensional framework.
Through this extension, the group’s geometry allows for the
understanding of the quantization of several charges, includ-
ing electric charge, and opens the way to the emergence
of new quantum charges. This section establishes a con-
nection between Souriau’s work and the Kaluza—Klein for-

@ Springer

malism to explain complex physical phenomena in a higher-
dimensional spacetime [9,21,23,24].

The Janus dynamic group, which combines PT-symmetry
(simultaneous inversion of energy, time, and spatial coor-
dinates) and C-symmetry (charge conjugation), allows the
modeling of interactions between matter, antimatter, and neg-
ative mass particles. Thanks to Noether’s theorem, this group
associates scalar invariants with the observed symmetries,
thus clarifying the interactions between these different enti-
ties within a bimetrical framework, and allowing the exten-
sion of Sakharov’s model by adding compactified dimensions
for each quantum charge [16, 18,24].

To illustrate this concept, in the context of our study on
bimetric models, we proposed a model of wormhole link-
ing two PT-symmetric folds of the universe via a modified
Einstein—Rosen bridge [10]. This model includes a cross term
dr dt in the corresponding metric, leading to a finite free-fall
time to the wormhole’s throat for an external observer. The
two folds are CPT-symmetric for photons, which are neu-
tral particles. This wormhole model allows for unidirectional
traversal through its throat, inducing a space-time inversion.
This opens the possibility of interactions between matter and
antimatter, arising from the PT symmetry observed during the
transition between the two universe folds. Thus, the congru-
ent identification of points on the two universe folds and the
reversal of the arrow of time induce an inversion of energy,
offering new insights into the structure of space-time and
the potential inversion of particle mass while crossing this
bridge.

The Janus model will also be studied from a topolog-
ical perspective, with a closed universe geometry where
P and T symmetries naturally emerge. Spacetime is mod-
eled by a compact universe with the topology of a 4-
dimensional sphere S*, which forms a two-fold cover of the
projective space P*. In this structure, the antipodal points,
representing the Big Bang and the Big Crunch, coincide.
By replacing these singularities with a tubular structure,
they disappear, allowing P and T symmetries to emerge
as natural consequences of this closed projective geometry
(P*) and be interpreted in a purely topological framework
[3,13,15].

One of the earliest attempts to introduce negative masses
into a cosmological model, explored by H. Bondi in 1957,
showed that the coexistence of positive and negative masses,
which respectively induce attraction and repulsion, leads
to the “runaway effect” [2]. In this effect, a positive
mass and a negative mass attract gravitationally while
moving away from each other, thus violating the action-
reaction principle. This effect has remained a major chal-
lenge for integrating negative masses into standard cosmol-
ogy.

Thus, to resolve the crisis of modern cosmology, the
Janus model proposes a paradigm shift. Since the 1970s,
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the ACDM model has failed to explain certain observed
phenomena, such as the rotation speeds of galaxies and
the acceleration of cosmic expansion. The Janus model,
based on a bimetrical geometry with positive and negative
masses evolving on distinct geodesics, offers an alterna-
tive. It proposes a new approach to solving anomalies such
as the rapid formation of galaxies after the Big Bang and
discrepancies in the measurement of the Hubble constant
[6,8].

The Janus model proposes a bimetrical system where grav-
itational interactions between positive and negative masses
are described by distinct field equations, each associated with
its own metric. The construction of ahomogeneous, isotropic,
and time-dependent solution in the Janus model relies on
FLRW-type metrics, respectively describing the universes of
positive and negative masses. A common energy conserva-
tion relation is established, proposing an exact solution for
dust universes, where the observed cosmic acceleration is
interpreted as a negative total energy. Numerical compar-
isons confirm the model’s compatibility with observations,
as illustrated by the magnitude-redshift curve. The interac-
tion laws in the Janus model reveal that masses of the same
sign attract, while those of opposite signs repel, thus elim-
inating the “runaway effect”. The model reproduces local
observations of general relativity while replacing dark mat-
ter and dark energy with invisible negative masses. These
negative masses form void-like structures that confine posi-
tive mass, accelerating star and galaxy formation in the first
few hundred million years, in agreement with data from the
James Webb telescope and observations of large cosmic voids
[4,12,14,16,17].

Finally, the mathematical consistency of the Janus model
is demonstrated in the weak field limit, thanks to the gen-
eralized conservation of energy and the Bianchi identities.
The calculation of Schwarzschild metrics for positive and
negative masses shows that masses of the same sign attract,
while those of opposite signs repel. The model satisfies the
Tolman—Oppenheimer—Volkoff equations in the Newtonian
approximation, while remaining compatible with cosmolog-
ical observations. Itis also valid in regions dominated by neg-
ative masses, such as the dipole repeller, where it predicts a
negative gravitational lensing effect, dimming the luminosity
of background objects [1,8,10,11].

In summary, the Janus cosmological model proposes an
extension of general relativity by introducing two distinct
metrics, each associated with a type of mass, allowing for
the explanation of both the acceleration of the universe’s
expansion and certain large-scale structures, while remain-
ing compatible with local observations of general relativity.
This analysis opens new perspectives and places the Janus
model among the approaches that can be tested by modern
cosmological observations.

2 The physical interpretation of time inversion
(T-symmetry)

The T-symmetry refers to the inversion of the time coordi-
nate. In 1970, contributing to the development of symplectic
geometry and its application to physics, mathematician J.-M.
Souriau provided the physical interpretation of this inversion
of the time coordinate [24]. The Gram matrix defining the
Minkowski space is:

10 0 O
0-10 O

G_OO—IO M
00 0 —1

Its isometry group is the Poincaré group:

LC
()

where L is the matrix representing the Lorentz group Lor
which describes how spacetime coordinates change between
different inertial frames. These transformations include rota-
tions in space as well as Lorentz transformations (boosts),
which are changes of reference frames moving at a constant
speed relative to each other. It is axiomatically defined by:

L'GL =G, ()
and C is the quadrivector of space-time translations in R!3
as follows:

At
Ax

c=lal @)
Az
It acts on points in Minkowski space:

£ = ®)

t
X
y
<

This Lie group with 10 independent parameters' is the
isometry group of this space, defined by its metric:

ds? = dr? — dx? — dy? — dz%. (6)

The Lorentz group Lor has four connected components:

e Lor, is the neutral component (its restricted subgroup),
does not invert either space or time and is defined by:

Lor, ={L € Lor, det(L) =1 N [L]gpo > 1}

! Including the 6 independent parameters of the Lorentz group (3 rota-
tions and 3 boosts) and 4 independent transformations, which are trans-
lations in the 4 directions of Minkowski space.
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e Lorg inverts space and is defined by:
Lors = {L € Lor, det(L) = —1 N [L]oo > 1}
e Lor; inverts time but not space and is defined by:
Lor; ={L € Lor, det(L) =1 N [L]oo < —1}
e Lorg, inverts both space and time and is defined by:
Lorg = {L € Lor, det(L) = —1 N [L]gy < —1}

And we have:
Lor = Lor, U Lory U Lor; U Lorg. @)

The first two components are grouped to form the so-called
“orthochronous” subgroup:

Lor, = Lor, U Lory. ®)

It includes P-symmetry, which poses no problem for physi-
cists who know that there are photons of “right” and “left”
helicity whose motions are derived from this symmetry. This
corresponds to the phenomenon of the polarization of light.

The last two components form the subset “retrochronous”
or “antichronous”, whose components invert time:

Lory, = Lor; U Lorg. 9)

Thus, we have:

Lor = Lor, U Lor,. (10)
Note that:
Lor; = —Lory Lorg = —Lory,. (11

The Poincaré group inherits the properties of the Lorentz
group and thus has four connected components, it is defined
by:

g:={<[6f), LeEorﬂCeRl‘3}, (12)

acting on Minkowski space as follows:
gX)=LX+C. (13)

The action of the group on its space of moments is the
action on the dual of the Lie algebra of the group?. The ele-
ment of the Lie algebra is obtained by differentiating the ten

2 Souriau’s approach, thanks to the Poincaré group which is the isom-
etry group of Minkowski space encompassing the Lorentz group (with
its four connected components), allows the parameters associated with
each of these motions, whose representative points belong to a vector
space, the space of moments, to emerge. The dimension of this space is
equal to that of the group: ten. Indeed, the Lorentz group is made up of
transformations that preserve the quadratic form of space-time. It con-
sists of the orthochronous Lorentz transformations and the translation
group. The transformations of the orthochronous Lorentz group have 6

@ Springer

components of the group. Souriau designates by the Greek
letter A the differential of the square matrix Z representing
the element of the Poincaré group, and by the Greek letter I”
the element of the subgroup of spatio-temporal translations:

. AT A 1,3
z._{(o 0),/1_ ANT eR } (14)

The elements of the Lorentz group act on points in space-
time, transforming one motion into another. By applying an
element L of the Lorentz group to a given motion, we obtain
a new motion. The neutral component Lor, is a subgroup
containing the identity matrix that inverts neither space nor
time.

Let’s consider the 4-component matrix « made up of two
parameters A1 and Aj:

A1 0 00
foxoo0 =1
W(hy,h) = 000 with ho = +1 (15)
00 0 A

Thus, the four components of the Lorentz group can be easily
expressed using the four possible combinations of these two
parameters applied to its neutral component, of which an
element L, € Lor, is expressed according to the expression
L =wL,:

1000
w1y X L, = 8(1)(1)8 € Lory,
0001
10 0 0
w1,-1) X L, = g _01 _01 8 € Lor,
00 0 —1
—-1000
w-1,1) X L, = 8 (])(1)8 € Lor;
0001
-10 0 O
W1.-1y X Ly = 8 _01 _01 8 € Lorg (16)
0 0 0 —1
We note that A; = —1 inverts time while A, = —1

inverts space. The four components are grouped into two

Footnote 2 continued

degrees of freedom, while the translation group has 4 degrees of free-
dom. This structure leads to 10 independent parameters of the Poincaré
group. By combining them into an antisymmetrical matrix called a for-
sor, the parameters of the space of motions can thus be defined.

3 (13.54) of [24]. He then writes j, an element of the space of motions,

in the form (13.57) and expresses the invariance in the form of the
constancy of the scalar (13.58), where M is an antisymmetric matrix.
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subsets “orthochronous” and “retrochronous” according to
the respective expressions (8) and (9).

The Poincaré group can then be written according to these
four connected components as follows:

g::{(wé'”f>,a)Lne£orﬂCe]Rl’3}. (17)

Thus, the action of this Poincaré group on the spacetime
coordinates yields the following space of motions:

wL, C &l |oL,gE+C
IR ®
Indeed, this describes the action of the Poincaré group on

its space of moments w, consisting of ten independent scalar
quantities:

The energy E,
The momentum p = {px, py, Pz},

The passage f = {fx, fy. fz},
The spin s = {ly, Iy, [;}.

If we consider the motion of an object in space, such
motion is also defined by its moment p. The physicist can
then apply an element G, for example from the Galilean
group, to this moment . This produces a new moment .
This action can be written as follows:

W =Gugr, (19)

where QT represents the transpose of this matrix G. w is an
antisymmetric moment matrix of size 5 x 5% where the more
compact form is defined as follows:

M —P
u—(PT 0 ) (20)
with?:
0 —I; I, fi E
I 0 =l f Px
M = z Yl P = ) 21
=ly I, 0 f; Dy @0
_fx _fy _fz 0 Pz

Then, by applying the action of the Poincaré group (12)
on the dual of its Lie algebra, i.e., on its space of moments,
we obtain the following action according to (19):

, (LC\ (M =P\ [(LTO
#= (0 1)<PT 0>(CT 1>’ (22)

, (LMLT—LPCT+CPTLT —LP
w= PTLT 0o ) 23)

4 Meaning the symmetric elements with respect to the main diagonal
have opposite signs. The elements on the main diagonal are equal to
zero, as each is its own opposite.

5 M is the moment matrix associated with p with dimensions 4 x 4,
and P, a four-vector energy-momentum with dimensions 4 x 1.

We can deduce®:

M =LML"+cP"LT—LPTC, (24)
and
P =LP. (25)

Therefore, the torsor of Poincaré group is given by the dif-
ferent components of the space of moments’ as follows:

w={M,Py=1{l,g,p, E}, (26)

where [ is the angular momentum of M, g is the relativistic
barycenter of M, p is the linear momentum of P and E is

the energy of P.
Now, let’s consider for example the symmetry T, where
there is only a time inversion (A1 = —1), without space

inversion (A, = 1), in a case where there is also no translation
in spacetime (C = 0). We thus have:

w(-1,1) X L, = L. 27
Hence:
—-1000 t -t
0100 X X
L; x &= 0010 X N EE (28)
0001 Z z

Thus, we obtain the action of time inversion in the space of
trajectories or in spacetime.

The second Eq. (25) sheds light on the physical signif-
icance of this inversion of the time coordinate. Indeed, the
application of the L; component of the Lorentz group to the
motion of a particle gives:

—-1000 E —E

0100 Px Px
P =L,P= = . 29
! 0010]] py Py (29)

0 001 Dz Pz

Therefore, we can deduce that the application of the L, com-
ponent of the Lorentz group to the motion of a particle induces
an inversion of its energy from E to —E.

The T symmetry applied to the motion of a particle inverts
its energy which leads to mass inversion® following the def-
inition of the mass’ as:

m =+ PT.Psgn(E). 30)

A very detailed commentary on the work can be found in
reference [22]. The approach is based on the introduction of
the space of motions as a dual of the Lie algebra of the group.

6 (13.107) of [24].

7 (13.57) of [24].

8 page 198-199 of [24].
9 (14.57) on page of [24].
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In this context, we uncover the physical interpretation of
the model proposed by A. Sakharov: the second universe
in his framework could consist of particles possessing both
negative energy and negative mass.

To further extend the interpretation of fundamental sym-
metries, we now turn our attention to C-symmetry, which is
associated with charge conjugation. By introducing a higher-
dimensional framework inspired by Kaluza—Klein theory,
we can offer a geometrical interpretation of electric charge,
according to Noether’s theorem. This will allow us to explore
the relationship between spacetime transformations and the
emergence of electrically charged particles.

3 Geometrical interpretation of electric charge

The geometrical interpretation of C-symmetry, which is syn-
onymous with charge conjugation and matter—antimatter
duality, was provided by J.-M. Souriau in 1964 in chapter
V of reference [24].

Let’s apply an extension of the Poincaré group to form the
following dynamic group:

10 ¢
0LC
001

,peRNL=AL, € Lor N\

=+INnCeRW}. (31)

Starting from Minkowski space:

(32)

e
Il

N R~
Il

N
N~
N—

let’s introduce Kaluza space!? that incorporates a 5 x 5 Gram
matrix:

10 0 0 O
0-10 0 O
=100 —-10 O =<g_01) where
00 0 —-10
00 0 0 —1
10 0 O
0-10 O
G= 00 —-10 (33)
00 0 —1

In the considered group, we just add a translation ¢ to the
fifth dimension ¢. Thus, the dimension of the group becomes

10 Kaluza space is a hyperbolic Riemannian manifold with signature
(+—=—=—=-).

@ Springer

11. It is the isometry group of Kaluza space, defined by its

metric:
ds? =dX"rdx =dr> —dx* —dy* —dz> —d¢%,  (34)

with:

(-

According to Noether’s theorem,'! this new symmetry is
accompanied by the invariance of a scalar that we will call
q. The torsor of this Kaluza group then incorporates an addi-
tional parameter:

nw={M,P,q}={l,g, p, E, q}. (36)

Let’s introduce the action of the group on its Lie algebra:

(35)

N =~

7' =g 'Zg. (37)

If we consider an element of the Lie algebra of this group:

0 0 8¢ 0 0 &¢

Z=10Goy | Z =[0G y |, (38)
00 O 0 0 O

we obtain:
0 0 &¢ 0 0 8¢

Z' =[0G y' | = 0L 1GowL L7'GoC + L1y |.
00 0 0 0 0

(39)

This allows us to deduce the action of the following group:

q9 =q, (40)
M =LML" —LPC"+cCP"LT, 41)
P =LP. (42)

If we identify ¢ as the electric charge, this would show that
the motion of a massive particle in a five-dimensional space
would transform it into an electrically charged particle.

The interpretation of C-symmetry within a higher-dimen-
sional framework, as explored, leads naturally to a broader
geometric understanding of symmetries in the Janus model.
Specifically, the notion of charge conjugation extends to
encompass the duality between matter and antimatter. To
develop this further, we now introduce the Janus restricted
group, which provides a formal structure to describe these

11 Noether’s theorem states that for every continuous symmetry of a
physical action, there exists a conserved quantity. In our context, if
a new symmetry ensures the invariance of a scalar ¢, this scalar is
the conserved quantity. This means that ¢ remains constant when the
symmetry is applied to the system’s action.



Eur. Phys. J. C (2024) 84:1226

Page 7 of 24 1226

symmetries. This group allows us to explore how quantum
charges can be inverted by compactified dimensions, linking
the symmetry properties of spacetime to the emergence of
quantized charges and new quantum numbers.

4 Matter—antimatter symmetry (C-symmetry)

Let’s introduce the Janus restricted group as follows:

u0 e
g = OLC |,nu==xlNgpeRNL=21r
001
Lo LorNi==+1NCeR¥Y. (43)

The action of the group on the coordinates of the 5-
dimensional spacetime defined by (35) yields the space of
the following motions:

n0 ¢ ¢ ne+¢
0LC el=|LE+C ). (44)
001 1 1

A similar calculation to the previous one yields the action of
the group:

q' =nq. (45)
M =LML" —LPC"+cCP'LT, (46)
P =LP. 47)

This group acts on the five-dimensional Kaluza space. We
observe that © = —1 reverses the fifth dimension ¢ and the
scalar q.

Through a dynamic interpretation of the group, we find the
idea suggested by J.-M. Souriau [24]: the inversion of the fifth
dimension is associated with the inversion of electric charge.
However, this is only one of the quantum charges. Indeed,
the C-Symmetry translating the “matter—antimatter” sym-
metry introduced by Dirac [5], reverses all quantum charges.
This inversion operation is only obtained by adding as many
compactified dimensions as there are quantum charges. The
action of the group on the coordinates of n-dimensional
spacetime yields the space of the following motions:

©0 0 --0¢; ! wl t gl

O 0007 [ ne’ + ¢

00 0 . : 4s)
Sl 0 9P ¢P ueP + ¢?

00.-.-0 L C & LE+C
00---00 1 1 1

t

q>0<0 =Ot
CSB ./
d

Fig. 1 Inversion of the winding direction of a particle’s motion reflect-
ing the C-symmetry

The torsor of this group incorporates several additional
scalars g?:

P
w={M Py ¢V={.g.p.Eq'.q" ....q"). (49
1

This allows us to obtain the action of the group on its momen-
tum space:

" = nuq', (50)
q" = uq', (51)
(52)

q'"" = uq?, (53)
M =LMLT —LPCT +CPTLT, (54)
P =LP. (55)

Moreover, Souriau considers that electric charge can be
geometrically quantized into discrete values (+e, 0, —e)
when the associated fifth dimension is closed.

Imagine representing motion in Minkowski space along a
simple straight line oriented in time. At each point, we add
a closed dimension, which extends Minkowski space into a
bundle. In Fig. 1, it is represented as a cylinder.

But in approach [21], these transformations no longer a
priori preserve the electric charge ¢, which then becomes
dependent on the chosen coordinate system. In reference
[21], taking up the approach initiated in [23], the author opts
for a closed fifth dimension, in which the radius of this “uni-
verse tube” becomes very small, of the order of Planck’s
length. He then rediscovers the invariance of electric charge
and concludes [21], we quote:

In this paper, we revisit the Kaluza—Klein theory from
the perspective of the classification of elementary parti-
cles based on the coadjoint orbit method. The keystone
conjecture is to consider the electric charge as an extra
momentum on an equal footing with the mass and the
linear momentum. We study the momentum map of the

@ Springer
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corresponding symmetry group Gy which conserves
the hyperbolic metric. We show that the electric charge
isnotaninvariant, i.e.itdepends on the reference frame,
which is in contradiction with the experimental obser-
vations. In other words, it is not the symmetry group of
the Universe today as we know it. To avert this para-
dox, we scale the fifth coordinate and consider the limit
when the cylinder radius @ vanishes. For the corre-
sponding group @0 also of dimension 15, the charge is
an invariant then independent of the frame of reference
and the observer. On this ground, we propose a cosmo-
logical scenario in which the elementary particles of
the early Universe are classified from the momenta of
the group G1, next the three former dimensions inflate
quickly while the fifth one shrinks, leading to the 4D
era in which as today the particles are characterized
by the momenta of the group Go. By this mechanism,
the elementary particles can acquire electric charge as
a by-product of the 4 4+ 1 symmetry breaking of the
Universe. This work opens the way to the geometric
quantization of charged elementary particles.

The expression for this characteristic dimension of this uni-
versal tube is given in [23] on page 412:

ho|x
Ry AT 56
ee 3 (56)

x being the Einstein constant taken equal to [23]:
8n G

2

1.856 x 107*’cm g~ . (57)

By introducing numerical values, this characteristic length
is 3.782 x 10~32cm. Dividing by 27 gives us the order of
magnitude of Planck’s length. In this view, the quantization of
electric charge and its constancy are derived from the closure
of the extra dimension associated with the decrease in the
characteristic dimension associated with it.

This group refers to an extension of the Poincaré group,
i.e. to a field-free, curvature-free universe. This construction
of a five-dimensional relativity was suggested in 1964 in ref-
erence [23] and has been taken up again more recently in
[21]. Note that it is in [23], page 413, that the link between
charge conjugation and fifth-dimensional inversion is first
mentioned.

By generalizing [9], we can envisage an extension of
space-time to a space with 4 + p dimensions, all of which
may see their characteristic dimensions reduced, like that of
this fifth dimension, each of these collapses leading to the
emergence and quantization of new quantum numbers, bary-
onic, leptonic, unique etc., the electric charge being only the
first of these.

Thus, the Janus restricted group has provided us with
a framework for understanding the matter—antimatter sym-
metry (C-symmetry) and the inversion of quantum charges

@ Springer

through additional compactified dimensions. We can now
extend it to a broader symmetry group associated with A.
Sakharov’s model, the Janus group, which incorporates both
C-symmetry and PT-symmetry. This extension allows us to
explore a dynamic group structure that includes negative
masses and antimatter within the framework of Sakharov’s
twin universe model.

5 Group associated with A. Sakharov’s model: the
Janus group

If we want to construct a group that translates the T-symmetry
invoked by Sakharov, we’ll replace L, by AL, with A = £1.
But, as proposed in [16], we can translate what had already
been proposed [18], we quote:

All phenomena corresponding to ¢+ < O are, in this
hypothesis, assumed to be CPT images of phenomena
corresponding to ¢ > 0.

Then, by introducing a new symmetry to the previous Janus
restricted group, which we can call PT Symmetry allowing
the conversion of matter into antimatter with negative mass!Z,
we thus combine C-symmetry and PT-symmetry to form the

Janus dynamic group as follows:

A 0 @
g = 0 AL, C |,
0 0 1

ampe{-L,1JNn¢peRNL, € Lor,NC € R Y (58)

We can consider that particles of matter and antimatter can
coexist in the same space fold. However, no coexistence is
possible for the motion of particles deduced by T-symmetry
(or PT-symmetry). This space is of dimension 4 + p (for
p quantum charges). We will therefore consider the two-
fold covering of this manifold M, . In each of these two
folds, there remains a possibility to perform the symmetry
corresponding to u = —1, that is, the inversion of all quan-
tum charges. In other words, the “matter—antimatter” duality
exists in both folds.

To understand the nature of the different components of
these folds, we will consider the motion of a particle of matter
with energy and mass:

e By acting on this motion with elements of the group cor-
responding to (A = 1; u = 1), we will obtain other
motions of particles of matter with positive mass and
energy.

12° A concept we could call antimatter in the sense of Feynman [7).
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e By acting on this motion with elements of the group cor-

responding to (A = 1; u = —1), we will obtain other
motions of antimatter particles with positive mass and
energy .

e By acting on this motion with elements of the group cor-
responding to (A = —1; u = 1), we will obtain other
motions of particles of matter with negative mass and
energy.'4

e By acting on this motion with elements of the group cor-
responding to (A = —1; u = —1), we will obtain other

motions of antimatter particles with negative mass and
energy .

Its isometry group is that of Janus space, defined by the
same metric as structuring Kaluza space (34), and its dimen-
sion is 11.16 The torsor of the group is also the same as (36).
However, if we consider an element of the Lie algebra of this

group:

0 0 69
Z=|0AGw y |, (59
0 0 1

we can then calculate Z’ according to the relation (37) as
follows:

0 0 &¢
Z'=|0AGo y'
0 0 1
0 0 (Ap)d¢
= | 0L ' GwL, L' GoC + ALYy | (60)
0 0 0

Thus, by identification, we can deduce:

8¢ = rude, (61)
o =)*GL;'GoL,, (62)
y' =22L;'GwC + AL, y. (63)

We know that:

L;'=6LlG. (64)
Then:
8¢" = Audg,

o =A2LloL,, (65)

Y =12GL}wC + AGL] Gy.

13 These are “antimatter in the sense of Dirac” (C-symmetry).
14 CPT-symmetry.
15 These are “antimatter in the sense of Feynman” (PT-symmetry).

1610 + 1 dimension associated with the fifth space dimension ¢ that
J.-M. Souriau identifies with the electric charge g.

However, inspired by J.-M. Souriau, we could add as many
additional closed dimensions as quantum charges and write
the dynamic group as follows:

A0 0 - 0 ¢!
0 A 0 -+ 0 ¢?
00 .... 0 66)
: A 0 P
0 0 ---0 AL, C
0 0---0 0 1

The isometry group of this space can be defined by the
following metric:

ds? = (d)? — (dx)? — (dy)?* — (dz)* — d¢1)?

—(dgH? — - = (deP)% (67)
With:
1
X
y
E Z
¢
;'P

The action of this Janus group on the coordinates of 10 + p
independant parameters then yields the space of the following
motions:

Ar 0 0 - 0 qb; ¢! ! + ¢!
0OArne 0 --- 0 ¢ 2 Ape? + @2
00 oov 0 _ :
a0 P ¢P AugP + P
0 0---0AL, C 3 ALo§ +C
00---0 0 1 1 1

(69)

According to Noether’s theorem, this new symmetry is
accompanied by the invariance of additional scalars g?”.
Therefore, the torsor of the group integrates them accord-
ing to this relation:

p

w={(MPY ¢'y={.g.p.E.q".q" ...
1

.q"). (70)
Thus, the duality relation!” gives us:

1 T Lo
ST (M )+ P ~Gy+8¢21:q’

17 (13.58) from [24].
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Big Bang

closed space

maximum
extension

Big Crunch

Fig. 2 Asimplified 2D representation of a closed universe with a spher-
ical topology S, illustrating the temporal progression from the Big
Bang to the Big Crunch, with the universe reaching maximum spatial
extension in between

1 L
- ET,(M/.a)’)+P/T.Gy’—{—quZq”. (71)
1

This allows us to deduce the action of the group by identifi-
cation with (65):

p ) P
Yot =) 4, (72)
1 1

M =LMLY —LPCT+CPTLT, (73)
P =LP. (74)

Having established the Janus dynamic group as a natu-
ral extension of Sakharov’s model, which incorporates both
PT-symmetry and C-symmetry, we now shift our focus to
the topological implications of the Janus model. In partic-
ular, we will explore how the symmetries discussed earlier
can emerge from a closed, higher-dimensional universe. This
section delves into the topological structure of the model,
illustrating how P and T symmetries can arise naturally from
the geometry of a closed universe, modeled as a projective
space P4,

6 Topology of the Janus model

Let’s consider a universe closed in all its dimensions, includ-
ing space and time (see Fig. 2).

Diametrically opposed, antipodal points can be brought
into coincidence. The image is then that of a P? projective.
The north and south poles, one representing the Big Bang
and the other the Big Crunch, come into coincidence. The

@ Springer

sphere cannot be paved without the presence of these two
singularities. The same applies to any sphere S** if n is even,
especially if this dimension is 4. This geometry was proposed
in [13].

The Fig. 3 shows how this coincidence of antipodal
regions generates this T-symmetry. On the S? sphere, the
direction of time is given by the orientation of the merid-
ian curves. This orientation is shown on the left at the new
state of maximum expansion, when space is identified with
the sphere’s equator. During this folding of the S? sphere,
described in reference [15] page 65, the vicinity of this equa-
tor is configured as the two-folds cover of a M6bius strip with
three half-turns (see Fig. 3 on the right).

In Fig. 4, we evoke the appearance of T-symmetry by
manipulating the vicinity of a meridian line. In addition, we
evoke the possible elimination of the Big Bang - Big Crunch
double singularity by replacing them with a tubular passage,
which then gives this geometry the nature of the two-fold
cover of a Klein bottle (Fig. 4).

For enantiomorphy and P-symmetry to appear, the oper-
ation would have to be performed on a larger sphere. This
aspect can be highlighted by considering the conjunction of
antipodal regions in the vicinity of a meridian line, which is
then configured according to the two-fold covering of a half-
turn Mobius strip. The Fig. 5 illustrates this enantiomorphic
situation (Fig. 5).

By bringing the antipodal points of even-dimensional
spheres into coincidence, we locally create a configura-
tion associating two T-symmetrical folds. By adding further
dimensions, the coincidence of the antipodes creates a two-
fold CPT-symmetric coating configuration of a projective
space. In the case of the sphere S?, which corresponds only
to a 2D didactic image, the image of the projective P2 is its
immersion in, which corresponds to the surface described in
1903 by the German mathematician Werner Boy [3], see Fig.
6. In this figure, we show how the coincidence of the antipo-
dal points of the equator of the sphere S? gives the two-fold
covering of a Mobius ribbon with three half-turns (Fig. 6).

In this section, we have demonstrated that the P and T sym-
metries invoked by A. Sakharov can arise as consequences
of a purely topological structure, specifically the covering of
a projective space P*.

After exploring the topological structure of the Janus
model, we now address a major consequence of T-symmetry:
the introduction of negative masses. According to Souriau,
the application of T-symmetry to the motion of a particle
inverts its energy, which leads to the inversion of its mass,'®
in accordance with the definition of mass.!® Although this
idea is elegant, it presents significant challenges when inte-
grated into the framework of general relativity. In the follow-

18 pages 198-199 of [24].
19°(14.57) on page 346 of [24].
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Fig. 3 How the coincidence of
antipodal regions creates
T-symmetry. Drawing extracted
from [15], page 65

Fig. 4 Coincidence of
antipodal regions on a sphere S,
according to the two-folds cover
of a half-turn Mébius strip, with
the appearance of T-symmetry

Fig. 5 P-symmetry as a
consequence of contacting
antipodal region neighborhoods
on an S? sphere

5

Maximum extent

y
'

Big Crunch

meridian
line

maximum extent
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Fig. 6 Boy’s surface,
immersion of the IP? projective
in R?

BIG BANG

ing section, we will propose an initial approach to incorporat-
ing negative masses into the cosmological model, analyzing
the implications of their interaction with positive masses and
the resulting geodesics.

7 Introducing negative masses: first approach

Using dynamical group theory, we showed that this T-
symmetry was synonymous with the introduction of negative
masses into the cosmological model. A. Sakharov’s primor-
dial antimatter would therefore be endowed with negative
mass. This first step is far from anecdotal since, if we neglect
it, we admit to losing nothing less than half the universe from
the outset. Is it then possible to introduce negative masses into
the standard model of general relativity?

A first idea would be to consider that the field comes from

two sources, represented by two tensors, the first referring
to a positive mass content and the second to a negative mass
content:
Ry — %Rg,w —x [Tﬁ + Tlg;>] . (75)
We can then consider the metric solution corresponding to a
region where the field is created, firstly by a positive mass
content:

1
R = 5 Ry = XT3 (76)

Geodesics are given by a solution in the form of an external
metric:

26ME)
ds? = (1 - T) cdr?
cr

@ Springer

BIG CRUNCH

dr?

a 26 M
1-— —

_ 2 (d92 + sin? 9d(p2> . 77

cor

The geodesics evoke an attraction (see Fig. 7).
Now consider the field created by a negative mass M),
the field equation becomes then:

1 _
Ry = 5 Rguy = XTI\ (78)

And the solution corresponds to the metric:

2G|M )
ds? = (1 + %) cd?
cer

dr?

C2GIMO)
14+ ==

2 (d92 + sin? 9d<p2) . a9

c2r
The geodesics then represent a repulsion (see Fig. 8).

In this context, our single field equation provides only a
single family of geodesics, which the test particles, with both
positive and negative masses, must follow. We deduce that:

e Positive masses attract both positive and negative masses.
e Negative masses repel both positive and negative masses.
e Two masses of identical absolute values but opposite
signs are brought together, the positive mass flees, pur-
sued by the negative mass. Both then accelerate uni-
formly, but without any energy input, since the energy
of the negative mass is itself negative. This result was
illustrated in 1957 by H. Bondi [2]. This phenomenon is
known as “runaway effect”. What’s more, this scheme
violates the action-reaction principle. In 1957, the con-
clusion was reached that it was physically impossible
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Fig. 7 Deflection of positive-energy neutrinos by a positive mass. The
trajectories, when passing near the mass, are deflected more strongly due
to the gravitational effect. The angle of deflection reaches its maximum
(C) when the neutrinos graze the edge of the mass. Trajectories further

to include negative masses in the cosmological model.
This would only be possible at the price of a profound
paradigmatic shift, not by denying the achievements of
general relativity, but by considering its extension in a
wider geometric context.

After examining the introduction of negative masses and
their implications within the framework of general relativity,
we now turn to a broader cosmological context. The discov-
ery of anomalies, such as the dipole repeller and the accel-
erating expansion of the universe, has revealed significant
shortcomings in the standard model ACDM. Recent obser-
vations, particularly those made with the James Webb Space
Telescope, have intensified the crisis in cosmology by chal-
lenging long-held assumptions about galaxy formation. In
the following section, we will explore how the Janus cosmo-
logical model offers a paradigm shift capable of resolving
these issues by proposing a bimetrical structure for the uni-

Fig. 8 Deviation of
positive-energy photons by a
negative mass. The trajectories,
when the curvature remains
moderate, are very close to
hyperbolas. The angle of
deviation reaches a maximum - ——
(C) when the geodesic is tangent

away, such as (D), experience a weaker deflection, and the deflection
angle becomes null for trajectories passing at a very large distance from
the mass. The trajectory passing through the center of the mass (A)
remains undeflected due to the symmetry of the configuration

verse, integrating both positive and negative masses into a
broader and more innovative geometric framework.

8 A paradigm shift to escape the crisis of today’s
cosmology

In the mid-1970s, the excessive rotation speeds of stars in
galaxies had already led specialists to propose the existence
of dark matter, ensuring their cohesion. In 2011, the discovery
that the cosmic expansion was accelerating was attributed
to a new, unknown ingredient known as dark energy. Over
the decades, all attempts to assign an identity to these new
components ended in failure.

In 2017 [8], Hélene Courtois, Daniel Pomaréde, Brent
Tully and Yeudi Hoffman produced the first very-large-scale
mapping of the universe, in a cube of one and a half bil-
lion light-years across, with the Milky Way, our observation

to the limit of the mass. It then il
decreases steadily to zero at -
very large distances (D). The = > —
NN A
angle of deviation is null, due to ~
symmetry, when the geodesic
passes through the center of the -
mass (A)
- —
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point, at the center (see Fig. 9). By subtracting the radial
component of the velocity linked to the expansion motion,
they indicate the trajectories followed by the masses. A dipo-
lar structure appears. One formation, the Shapley attractor,
comprising hundreds of thousands of galaxies, attracts galax-
ies to itself. But, symmetrically to this formation, 600 million
light-years from the Milky Way, there is an immense void,
some one hundred million light-years across, which, on the
contrary, repels galaxies, and to which we give the name of
dipole repeller. To date, no theory has been able to explain
the existence of this vast void. While the idea of a gap in dark
matter, positive and attractive, has been evoked, it does not
hold water, as no mechanism has been found to give rise to
it. Since 2017, several other such voids have been detected
and located.

The launch of the James Webb Space Telescope has only
added to this crisis [6]. The Standard Model ACDM pro-
poses a hierarchical mechanism for the birth of stars and
galaxies. Gravitational instability appears as soon as matter
and radiation are decoupled. The scenarios for the forma-
tion of both stars and galaxies in this model make use of the
attributes conferred on hypothetical dark matter. But even
with these parameters, it is impossible to imagine galaxies
forming before a billion years. The Hubble Space Telescope
was already able to obtain images in the near infrared. Early
images of distant objects appeared to show groups of mini-
galaxies. But the James Webb Space Telescope showed that
these objects were nothing other than HII regions belonging
to barred spiral galaxies, fully formed, hosting old stars, only
500 million years old.

For decades, the Standard Model ACDM has relied
on its ability to account for CMB fluctuations as gravito-
acoustic oscillations, by adapting the numerous parameters
relating to dark matter, dark energy and, in particular, the
value of the Hubble constant. This desire to match obser-
vational data has resulted in a Hubble constant value of
67 Km s~! Mpc~!. This is significantly lower than the value
of 70 Km s~! Mpc~! deduced from direct observation of
standard candles.

All these factors are creating a deep crisis within the spe-
cialist community, and some voices are beginning to be heard,
suggesting the need to consider a profound paradigm shift.
This is what the Janus cosmological model?” proposes.

Since we are unable to introduce negative masses into the
general relativity model, let’s consider a profound change
of geometric paradigm, already evoked in the previous sec-
tions under the aspect of group theory and topology. The
motion of positive masses, immersed in the gravitational
field, takes place according to geodesics that we consider
to be derived from a first metric g,,. We will therefore
describe the motion of negative masses using a second set

20 See Sect. 9 where this model is developped.
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of geodesics, derived from a second metric g,,. We thus
have a manifold, whose points are marked by the coordinates
{(x9, x!, x2, x3}, equipped with a pair of metrics (8uv» 8-
We shall neglect the action of electromagnetic fields and con-
sider only the field of gravity. From the metrics and we can
construct Ricci tensors R, and ﬁ,w and their associated
Ricci scalars R and R.

As the Janus model proposes a paradigm shift by intro-
ducing a bimetric structure to account for both positive and
negative masses, we will now focus on the foundational math-
ematical structure underlying this model. The Janus cosmo-
logical model builds upon the interaction between two enti-
ties, i.e. positive and negative mass populations, each associ-
ated with its respective metric. In the following section, we
will explore the formulation of the action and field equations
governing this interaction, and how these coupled systems
lead to a coherent description of cosmic phenomena, offer-
ing an alternative to the limitations of the standard model
ACDM.

9 Foundation of the Janus cosmological model

To build this model, let us now consider the interaction
between two entities: ordinary matter with positive mass
interacting with negative mass through gravitational effects.
This model involving negative mass takes into account the
influence of both dark matter and dark energy.

‘We can describe this system of two entities with respective
metrics g,y and g, Let R and R be the corresponding Ricci

scalars. We then consider the following two-layer action”!:

1
A =/ (—R+S—|—S> Vgld*x
&

2x
+/ (i_ﬁ+§+§>\/|g7|d4x. (80)
e \2x

The terms S and S will give the source terms related to
the populations of the two entities, while the terms S and S
will generate the interaction tensors. x and y are the Ein-
stein gravitational constants for each entity. g and g are the
determinants of the metrics g,, and g,.. For k = %1, we
apply the principle of least action. The Lagrangian derivation

2l Integration over & using the element d*x is a method for com-
puting the total action in the bimetric spacetime, reflecting the four-
dimensional nature of this bimetric universe. This implies considering
the entire spacetime as the domain of integration, integrating the con-
tributions from each point to the action. The term d*x represents an
infinitesimal element of hypervolume of this bimetric spacetime, used
to measure each segment during integration. Thus, it is a multiple vol-
ume integral performed over the four dimensions of spacetime, accu-
mulating contributions to the total action from each four-dimensional
volume segment corresponding to each metric.
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Fig. 9 Location of the dipole repeller within the large-scale structure of the universe [8]. The dipole repeller is a hypothesized region of space
where galaxies are pushed away from, counteracting the attractive force of the Shapley Supercluster

of this action gives us:
0=94A,
1
=/6(—R+S+S>\/|g|d4x
e \2x
K— = = =
+f 8(—_R+S+S>\/|g|d4x,
& \2x

o[ (s )

e [2x \8g" ~ lgl sgm¥
*'V%ETS(QQETS)'+ V%§_8<z4§35>] N
o5 (e T2
*'V%§T8(§QETS)'+ V%§_8<24§35)} NP

(1)

For any variation §g"¥ and §g"¥, we locally obtain:
R 8/l )

1 [ 8R
2_(58’”+«/|?|8g“”

1 6(J|?|S)+ 1 8(/1glS)
Vigl g Jlgl sgm
K 3E R 8181 N 1 8(J/1g1S)
2x \sgm JE sgmy JVigl sgn

X
+ (82)

1 5(/1glS) 1S) (83)
N
Let us then introduce the following tensors:
2 8(/1glS) 88
T == 757 g = lagw toeS G0
— 2 8(/121S) R
ST sge T Cage 1w 83)
2 8/
T = 3(V/1glS) (86)
NG
— 2 §(J/IgIS
T = (Vg )' 87)
g NG
We obtain then from Eqs. (86) and (87):
12l _ 12 =2 8(/TgIS)
gl |g | VIZl 5gn
-2 §(/1g1S) 3S
= \/E 5gh = _23 T +g[LU87 (88)
lgl= -2 §(/1g1S)
Ig Ig NG
IS 8S -
- = (5gliv ) _ _zaglw + 2uwS. (89)

Introduced into Egs. (82) and (83), we can thus deduce the
coupled field equations describing the system of the two enti-
ties. To obtain the desired interaction laws under the New-
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tonian approximation, we must choose k = —1. The system
of equations then becomes:

1 18|
Ry — EgWR =X (T;w + %Zw) ) (90)
S R lg|—
R, — Eg;wR =KX (T;w + éT'Tuv> . oD

The tensor T}, is the energy-momentum tensor, which
represents the source of the field acting on positive mass

entities and positive-energy photons. The term Igl is the
source of this field attributed to the action of negative masses
on these positive masses. The tensor TW is the energy-
momentum tensor, which represents the source of the field
acting on negative mass entities and negative-energy pho-

tons, and the term Ig i is the source of this field attributed to

the action of positive masses on these negative masses. 7,
and T,w are the interaction tensors of the system of the two
entities corresponding to the “induced geometry”, meaning
how each matter distribution on one layer of the universe
contributes to the geometry of the other.??

General relativity produces only a limited number of exact
solutions. We will follow the same logic.

Having established the foundation of the Janus cosmolog-
ical model, with its bimetric structure and the correspond-
ing field equations, we turn to constructing explicit solutions
under the assumption of homogeneity and isotropy. By con-
sidering the FLRW form for both metrics, we aim to derive
a time-dependent solution that accounts for the interaction
between positive and negative mass populations. The next
section will focus on obtaining these solutions, exploring
their compatibility with observational data, and providing a
theoretical framework for the accelerated cosmic expansion.

10 Construction of a time-dependent, homogeneous and
isotropic solution

Given the symmetry assumptions, the metrics then have the
FLRW form. The variable x° is the common chronological
coordinate (time marker).

du?

guv = dx02 —a? [W + u2d6? + u? sin? 9d<p2:| ,
— ku

(92a)

2 du?
S = dx? —a? [—

2 + u?d6? + u? sin 9d<p:|

(92b)
22 Interaction between populations of positive and negative masses.
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Fig. 10 Comparison of observed and theoretical magnitudes as a func-
tion of z redshift [4]

The determinants of the two metrics are

g= —af sin? 0,

g = —a’sin’6. (93)
As shown in reference [ 16] the treatment of the two equations
leads to the compatibility relation:

pcta’ + petad = E = cst. (94)
This translates into conservation of energy, extended to both
populations. The exact solution, referring to two dust uni-
verses, corresponds to:

k=k=—1 (95)
and:
2 d2a 47 G
> =——E, (96a)
dx0 c
d%a 47 G
_2 _
i +— E. (96b)

A theoretical model loses interest if it cannot be com-
pared with observational data. The evolution of the positive
species will correspond to an acceleration if the energy E of
the system is negative. This provides a physical interpretation
of the acceleration of the cosmic expansion [12,17], which
then follows from the fact that the energy content is predomi-
nantly negative. Numerical data have been successfully com-
pared with observational data [4]. The corresponding curve
is shown in Fig. 10.
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To complete the model, we now need to provide exact
stationary solutions. We will restrict ourselves to s0(3) sym-
metry.

We now focus our attention on the interaction laws and
their observational consequences. These interaction laws,
derived from the coupled field equations of the Janus model,
govern how positive and negative mass entities influence
each other. The next section explores these laws in detail and
examines how they provide explanations for various cosmo-
logical phenomena, including the formation of large-scale
structures and the resolution of issues related to dark matter
and dark energy.

11 Interaction laws and observational consequences

In the system of coupled field equations (??) and (??), the
terms on the left-hand side involve the Ricci tensors Ry,
and R ,, and the corresponding Ricci scalars R and R. These
terms are calculated from the two metrics g, and g,,,,. Using
these two metrics, we then calculate the form of two operators
known as covariant derivatives V,, and ﬁﬂ. It turns out that,
due to their form, the two left-hand sides of both equations
identically satisfy the following relation:

1
Vi (RW — ERgW> =0, o7
_ [ 1
Vi <R,w - zRg,w) =0. (98)

The corresponding covariant derivatives of the two second
members must therefore also be zero, which corresponds to
the Bianchi identities, implying:

VT =0, (99)

VuT =0 (100)

We should also have:

v |57 -0

In stationary conditions, the square roots of the ratios of the
determinants behave like constants, reflecting an “apparent
mass effect”. Conditions (101) and (102) can therefore be
replaced by:

(101)

(102)

V., T =0, (103)
and
VuT v =0. (104)

Let’s write the system of equations in mixed notation,
replacing the square roots, which have become constant, by
the positive constants b and b*:

1
Rl — SRg) = x [T,f + b%ﬂ , (105a)
—v I—_ = ~) =V

R, —5Ra) = —x [T, +P°T,]. (105b)

Using the Newtonian approximation, in both populations the
non-zero tensor terms reduce to:

TOO =,0c2 >0

Ty =pé* <0

10 =pe <0
’2_'8 = ,oc2 > 0. (106)
In our system of coupled field equations, the presence of
a minus sign in front of the second member of the second
equation gives the following interaction laws:

e Masses of the same sign attract each other;
e Masses of opposite signs repel each other.

We have thus eliminated the runaway effect.

The first conclusion to be drawn is that where one of the
two types of mass is present, the other is absent, as immedi-
ately confirmed by simulations [14]. This is the case in the
vicinity of the Sun, and under these conditions the first equa-
tion is identified with Einstein’s 1915 equation. The model is
therefore in line with all the classical local observational data
of general relativity: Mercury’s perihelion advance, deflec-
tion of light rays by the Sun. The model therefore does not
invalidate that of general relativity, but presents itself as its
extension, made essential to integrate the new observational
data, which can no longer be managed by introducing the
hypothetical components of dark matter and dark energy.

We have seen, in our construction of the unsteady solution,
that negative energy dominates. The model is thus profoundly
asymmetrical. The negative mass component is proposed as
a substitute for the combined roles traditionally attributed
to dark matter and dark energy. By the way, going back to
the original idea, inspired by the work of Andrei Sakharov,
this allows us to attribute a well-defined identity to these
components. They are invisible, insofar as negative masses
emit photons of negative energy that our optical instruments
cannot capture. They are therefore simply copies of our own
antimatter, assigned a negative mass. We then have a new
distribution of contents (see Fig. 11).

At the moment of decoupling, when the gravitational
instability can play its role (we must then speak of joint grav-
itational instabilities), the characteristic Jeans time is shorter
for negative masses:

_ 1 1
tJ:—<<[J:—

NZETeIT] JACp’ (107
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ACDM Model

Janus Cosmological Model

M Dark energy ® Dark matter M Ordinary matter

Fig. 11 Comparative contents of the ACDM and Janus models

The result will be a regular distribution of negative-mass
conglomerates of spheroidal antihydrogen and negative-
mass antihelium. These will behave like immense negative-
mass protostars. As soon as their temperature causes hydro-
gen reionization, their contraction will cease. These forma-
tions will then radiate in the red and infrared wavelengths.
But their cooling time is then large compared to the age of
the universe, which means that these objects will no longer
evolve. The history of this universe fold associated with neg-
ative masses is totally different from our universe fold of
ordinary matter. It will not give rise to stars, galaxies or plan-
ets. It will contain no atoms heavier than negative-mass anti-
helium. And there will be no life. And, as we will see later:
these negative formations are deliberately situated within the
Newtonian approximation.

But there is another very important point. When these
spheroidal conglomerates form, they confine the positive
mass to the residual space, giving it a lacunar structure, com-
parable to joined soap bubbles. The positive mass is thus dis-
tributed in the form of thin plates, sandwiched between two
negative conglomerates that exert a strong back pressure on
it. The positive mass is thus violently compressed and heated.
However, due to its plate-like arrangement, it can cool down
very quickly through the emission of radiation (see Fig. 12).

The result is a pattern of first-generation star and galaxy
formation totally different from the standard one. This con-
figuration had been the subject of simulations [14] since the
first, heuristic, approach to the model, and the fact that objects
all form within the first hundred million years was one of its
predictions, largely confirmed by JWST data.

The lacunar structure, advocated as early as 1995 [14],
predicted the existence of large voids, which the discover-
ies of the dipole repeller and other similar large voids have
also confirmed. Once this lacunar structure has been formed,
matter tends to concentrate along the segments common to
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M Ordinary matter M Negative masses

three gaps, forming filaments (see Fig. 13 on the next page).
The nodes of this distribution will only develop into galaxy
clusters.

After establishing the interaction laws and exploring their
observational consequences, it is essential to verify the math-
ematical and physical consistency of the Janus model. This
requires demonstrating that the system of coupled field equa-
tions respects the Bianchi identities and provides consistent
solutions in the weak field limit. In the following section, we
will examine the necessary conditions to ensure this consis-
tency, particularly in regions dominated by ordinary matter,
such as near the Sun, as well as in regions dominated by
negative masses, such as near the dipole repeller.

12 The mathematical and physical consistency of the
model

This is ensured in an isotropic, homogeneous and unsteady
situation, the required condition being the generalized con-
servation of energy expressed by Eq. (94). We now turn to
the case of stationary solutions, limiting ourselves to those
that satisfy s0(3) symmetry. Bianchi identities must then be
satisfied, i.e. relations (99), (100), (103) and (104).

First, we will show the existence of asymptotic con-
sistency in Newtonian approximation situations. The key
aspects of this approximation are as follows:

e Velocities must be negligible compared to the speed of
light. This is the case for velocities (v) and (v) of ther-
mal agitation in both media, which are involved in the
definition of pressures. After decoupling:

ep(v) __ ep(v)
and ep = .
3 3

ep = (108)
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galaxies

Fig. 12 Early rapid star and galaxy formation

Fig. 13 Structure of positive
mass in contiguous bubbles

Big void

Cluster’s location

Joint soap bubbles

Cluster of galaxies

e Curvature effects must be neglected, meaning that the
radial coordinate must be much larger than the charac-
teristic length scale associated with curvature, i.e., the
Schwarzschild radius.

12.1 Newtonian approximation of the field generated by a
positive mass M

Let’s introduce the Schwarzschild radius Rs as follows:

2GM

eRs =c¢ s
2

(109)

where ¢ being a small parameter. so(3) symmetry imposes
the shapes of the two metrics:

ds? = e"dx® — e*dr? — r2d60% — r2sin®0dg?,  (110a)

452 = "dx® — e dr? — r2d62 — r2sin20dg>.  (110b)

The construction of a stationary solution then requires to
calculate the functions:

v(r), Ar), @), and A(r). (111)

To locate this solution, we need to consider the shapes of the

field source tensors:

T, TV, T,
ne

I w

==
and 7. (112)

Let’s start by considering a situation where only positive
mass is present. The tensors TM" and T; are then null and
the two field equations (??) and (??) become in mixed-mode
form:

1

R;—zg,ijxT”, (113)

E”—lg“Ez_)z lglzv (114)
1 2 1 |g| "

The form of the tensor Tlf in its classical mixed-mode form
is given by?3:

pc2 0 0 0
qv_| 0 —ep 0 0
1 0 0 —ep O

0 0 0 —ep

(115)

23 (13.1) p.425 of [1].
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As we are in the Newtonian approximation, ¢ is very small.
With the introduction of the metric (110a) and the tensor
(115) in the first field equation, we are led to introduce the
function m(r) such that:

2m(r)

e‘*:l—T = 2m(r) =r(l—e?). (116)

Similarly to equation (14.18) from [1], the classic calcu-
lation leads to the relationship:

Gp (7 5 4 5 G
m(r):c—z/‘0 drrr drzgrrr pc—z.

117)
We then obtain the classical Tolman—Oppenheimer—Volkoff
(TOV) equation [11]. Relation (117) places the small quan-
tity in front of any quantity that will be neglected in the
Newtonian approximation:

4meGpr3

1d m—+ —3—

S Lo S E(hed). (118)
¢z dr r(r —2me) c?
When ¢ tends to zero (or ¢ tends to infinity) we get:

d mc? Gp 4mr3
cp__pme _ ZRTTP (119)
dr r2 r2 3
4rip

The quantity —5* represents the amount of matter p(r)
contained inside a sphere of radius r. We know that the force
of gravity exerted inside a mass of constant density is equiv-
alent to that exerted by the mass located at the center of the
sphere, and that the mass located outside this sphere gives a
force of zero. So the quantity — % is the force of gravity,
per unit volume, acting on the matter contained in an ele-
mentary volume around a point at distance  from the center.
Thus the relation (115), which follows from the Newtonian
approximation, expresses that the force of gravity balances
the force of pressure. This is the classic Euler relationship.
Hence, the Schwarzschild interior metric built is given by:

2
3 2 1 r2 2 dr?
2_ | = _n )y _Z _ 0 _
ds* = 2\/(1 ;2> 2\/(1 ;2) dx 1_@
z

2 (d92 + sin2 9d¢2) .

(120)

This metric connects with the Schwarzschild exterior metric:

2GM ) dr?
2 _ 2470 2
ds —(1— C2r>cdx _—1—2G2M r
cr

(d02 + sin? 9d¢2) , (121)
where r,, is the radius of the star and 7 is a stellar constant as a
function of its density p. Itis the characteristic radius of a neu-
tron star, defined under the assumption of constant density p.
It establishes a critical threshold for the star’s radius, beyond
which the internal pressure becomes infinite at the center,
indicating a physical singularity or instability. This radius is
derived from the balance between gravitational forces and
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the internal pressure gradients within the star [10]. It is given
by:

R 3¢2
P = .
8t Gp

We can thus deduce, according to the classical theory of gen-
eral relativity, that a particle of ordinary matter will undergo
an attractive gravitational field due to the effect of a distribu-
tion of positive masses.

To ensure the mathematical consistency of the system of
two field equations (113) and (114), we therefore need to
consider a form of the tensor 7; that gives back this same
Euler relation when the Newtonian approximation is also
applied to this solution. This is guaranteed with the form of
the interaction tensor 7; of the field equation (114) as this
choice can stem from a Lagrangian derivation:

(122)

pc2 0 0 0

= | 0 +¢p 0 O
Tu= 0 0 +ep O (123)
0 0 0 +4ep

On the right-hand side of the second field equation (114),
the ratio of determinants will be considered almost unity
insofar as we perform this calculation within the Newtonian
approximation.

Then, if we consider that:

/EZ::

the calculation leads to the Tolman—Oppenheimer—Volkoff
(TOV) solution for the population of negative masses man-
aged by the second field equation:

everrd sinZ 0 ~ 14
eVerrdsin2 0 -~ (124)

m— 47180(jpr3

E - r(r + 2me) (p—s%).

29 = (125)
The two solutions, (118) and (125), asymptotically approach
the Euler equation in the Newtonian approximation as € tends
to zero. This also corresponds to the asymptotic satisfaction
of the Bianchi identities in the same context>*.
Consequently, it is possible to build the Schwarzschild
interior metric associated with the population of negative
masses by applying the same calculation scheme as for the
population of positive masses, thus constituting the solution

24 The inequality r >> 2 m (where m is often replaced by Ci—ZM to obtain
a dimension of length, M being the mass of the object and G the gravi-
tational constant) indicates that we are sufficiently far from the gravita-
tional source for the effects of general relativity to be negligible. Indeed,

at great distances, the length zsz is completely negligible.
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to the second field equation (114) as follows:

2
_ 9 3 2 1 r2 02
ds™ = 5\/<1+f_2)_§\/<1+f_2 dx

dr?

1+ 5

2 <d92 + sin? 6d¢2) . (126)

This metric must join the Schwarzschild exterior metric:

. 2GM dr?
d52 = (1 + )CdeO2 - r2

2 2GM
Ccr + ==
1 c2r

x <d92 + sin? 9d¢2) . (127)
We can deduce that a particle with negative mass will undergo
arepulsive gravitational field due to the effect of a distribution
of positive masses.

The Janus model presents a new paradigm, extending
general relativity by describing the universe as a four-
dimensional manifold My, endowed with two distinct met-
rics. These metrics are solutions to the system of coupled
field equations (??) and (??).

Let’s now consider the case, still in the Newtonian approx-
imation, where the geometry is determined by the presence
of negative mass, corresponding to regions of space domi-
nated by negative masses, such as near the dipole repeller

[8].

12.2 Newtonian approximation of the field generated by a
negative mass M

In regions where negative masses dominate, the system
becomes in mixed-mode form:

8|

1
R’ — Zo"R = ol 128
w28 X g ¥ (128)

_ 1. — L

R;—Eg;Rz—XT;. (129)

If we consider the impact of the presence of negative masses
on the geometry of spacetime structured by the metric tensor
of the first field equation (128) associated with the popu-
lation of positive masses, we can define the corresponding
interaction tensor (130) as follows:

pcz 0 0 0
0 —p 0 0

Vo __

Tﬂ‘oo-,so (130)
0 0 0 —p

Thus, the impact of the pressure gradient of negative masses
on the geodesics followed by ordinary matter and positive-
energy photons according to the field equation (128) trans-

lates into the following Tolman—Oppenheimer—Volkoff equa-
tion:

_ 47 G pr3 _
P mo T h
c2 r(r +2m) ct)’
Therefore, it is possible to build the Schwarzschild interior
metric solution in this manner:

2
3 2 1 r2 2
2 n 0
ds® = 5\/<1+f2>_5\/<1+f_2) dx

— 2 (d92 + sin? 0d¢2) .

(131)

(132)

This metric can be connected to the Schwarzschild exterior
metric:

2GM dr?
ds? = (1 + )Czdxo2 - d

2 2GM
Cc°r +
1 c2r

—r2 (d92 + sin? 9d¢2) . (133)
We can deduce that a particle of ordinary matter will undergo
arepulsive gravitational field due to the effect of a distribution
of negative masses.

Then, when the source of the gravitational field of the
second field equation (129) is created by a negative mass, we
can freely define the following energy-momentum tensor as
follows:

pct 000

— | 0500

=10 050 (134)
0 00p

We can therefore deduce the following Tolman—Oppenheimer—
Volkoft equation:

-3
po o+ e .y
27 e—am \"TE)
Hence, the interior Schwarzschild metric can be constructed
as follows:

2
3 P\ 1 r? o
=5 ) -z l1-%) | d
2 ( f2> 2\/( )
2

_ 2 (d92 + sin? 9d¢2) .

(135)

= (136)

22
7
This metric matches the exterior Schwarzschild metric:

- 2GM dr?
ds2 =(1- — Ezdx02 — ;
r 1 — 2_G2M
r

c

—r2 (de2 + sin? 9d¢2) . (137)
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We can deduce that a particle of negative mass will undergo
an attractive gravitational field due to the effect of a distribu-
tion of negative masses.

Both solutions (131) and (135) reduces to the Euler equa-
_ GM(rrz) p(r)

tion approximately equal to in the Newtonian

limit, reflecting hydrostatic equilibrium.??

The form of these two source tensors satisfies the Bianchi
identities. This would obviously not be the case if the negative
mass were to fall outside of this framework. For that, there
would need to exist neutron stars of negative mass. How-
ever, the characteristic time of evolution of conglomerates of
negative mass, their “cooling time”, exceeds the age of the
universe. These spheroidal conglomerates cannot evolve, so
the content of this negative spacetime will be limited to a mix-
ture of negative mass anti-hydrogen and anti-helium. Since
nucleosynthesis cannot occur, there can be no anti-galaxies
or anti-stars, regardless of their mass. Consequently, there
cannot exist anti-neutron stars.

Moreover, in the case where this negative spacetime would
generate hyperdense stars through an as-yet-unknown mech-
anism, it would then be necessary to reconsider the form
of these tensors. However, the current configuration satisfies
all currently available and potentially available observational
data.

After verifying the mathematical and physical consistency
of the Janus model, we now turn to its predictive capabilities.
One of the most striking predictions concerns the existence
of large voids and structures such as the dipole repeller. The
Janus model not only accounts for these features but also
offers novel predictions regarding the effect of negative grav-
itational lensing on the magnitudes of background sources.
In the following short section, we explore the observational
signatures of this phenomenon, with a particular focus on the
implications for the dipole repeller.

13 Dipole repeller prediction

The Janus model is essentially falsifiable in Popper’s sense. It
predicted a large-scale twin structure with large voids. This
has been confirmed [8]. It predicted a very early birth of
first-generation stars and galaxies. A new prediction this time
concerns the magnitude of sources located in the background
of the large void. According to the model, the magnitude of
the light emitted by these distant sources will be attenuated
by the negative gravitational lensing effect. This is a novel
aspect, since it has been assumed that the two entities, posi-
tive and negative, interact only through antigravitation. Pho-
tons from these distant sources can then freely pass through

25 Where the pressure at the center of this negative mass spheroid is
balanced by the negative gravitational force depending on density and
mass.
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Fig. 14 Attenuation of the magnitude of objects in the background of
the dipole repeller

the negative-mass conglomerates. This means that both exter-
nal and internal geodesics must be used. The deflection effect
of light rays will be greatest when they graze the surface of
the object, with radius r¢. This effect weakens as you move
deeper into the object, becoming zero when the photons pass
through its center (see Fig. 8). Eventually, we will be able
to map the magnitudes of objects in the background of the
dipole repeller. Schematically, their luminosity will be atten-
uated in a ring-shaped pattern (see Fig. 14). This measure-
ment will immediately give us the value of the radius rp of
this formation.

After exploring the implications of the Janus model in
the Newtonian approximation and its predictions for large-
scale structures, such as the dipole repeller, we now move
beyond these limitations. In a universe dominated by positive
masses, certain astrophysical objects, such as neutron stars
and supermassive black holes, exhibit strong gravitational
effects that require a relativistic treatment. The following
section addresses the challenges of extending the model to
these extreme cases.

14 Beyond the Newtonian approximation

These objects are absent in the universe fold associated with
negative masses. In our universe fold of ordinary matter,
objects that deviate from the Newtonian approximation are
neutron stars and hypermassive objects located at the cen-
ter of galaxies, which early images show to be the seat of
a strong gravitational redshift effect, darkening their central
part. These objects are a priori manageable using the classic
pair of outer and inner metrics, taking rotation into account.
It should be remembered that we are under no obligation to
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provide the form of the source tensor of the other sector, in
this case an interaction tensor, whose form would be precisely
imposed by the Bianchi identities. It is conceivable that one
day someone will provide the exact form of this tensor.

But even in the absence of such an object, there is no a
priori inconsistency.

15 Conclusion

The genesis of the Janus model spanned several decades. The
starting point, in 1967, was Andrei Sakharov’s attempt to pro-
vide an initial explanation for the absence of observations of
primordial antimatter, which remains a significant flaw in
the Standard Model ACDM. This model offers no explana-
tion for the loss of half of the universe’s content. Sakharov
therefore proposed a universe structure with two sectors, the
second being T-symmetrical to our own. A few years later, in
1970, through the application of symplectic geometry, math-
ematician Jean-Marie Souriau demonstrated that this inver-
sion of the time coordinate, i.e., T-symmetry, is synonymous
with the inversion of energy and mass. Pushing this idea of
global symmetry further, Sakharov envisioned a twin uni-
verse that is CPT-symmetrical to ours. In this scenario, the
invisible components of the universe reduce to negative-mass
antimatter.

In 1994, we proposed that this universe structure corre-
sponds to a two-fold cover of a projective P*, by a com-
pact universe with the topology of a S* sphere. The two sin-
gularities of this spherical universe, the Big Bang and the
Big Crunch, then coincide. By introducing a tubular struc-
ture, these singularities disappear. This configuration con-
sists of two PT-symmetrical folds. These adjacent sectors
are assumed to interact solely through gravity. Therefore, the
interaction between positive masses in one sector and nega-
tive masses in the other sector must be taken into account.

However, the introduction of negative masses is not fea-
sible within the framework of general relativity, as it would
result in interaction laws that are incompatible with known
physical principles. Thus, a bimetric model is proposed. A
system of coupled field equations is then constructed from
an action, whose form eliminates the problematic runaway
effect. The interaction laws in the model dictate that masses
of the same sign attract each other according to Newton’s law,
while masses of opposite signs repel each other following an
anti-Newtonian law. Since these masses are mutually exclu-
sive, the negative mass can be neglected in the vicinity of the
Sun, and the first field equation then aligns with Einstein’s
equation.

In this way, the model remains consistent with local rela-
tivistic observations, such as the advance of Mercury’s per-
ihelion and the deflection of light by the Sun. Therefore,
the Janus model can be considered an extension of general

relativity. An exact, time-dependent solution is constructed,
revealing a generalized energy conservation law that applies
to both sectors. When adapting the model to observations, it
becomes evident that an accelerating expansion is present,
imposing a fundamental dissymmetry between the two enti-
ties involved.

In this framework, the vast majority of negative mass
replaces the hypothetical components of dark matter and dark
energy. As a result, the matter distribution is approximately
5% visible matter and 95% negative mass, which is invisi-
ble because it emits photons of negative energy that elude
detection by our observation instruments. This dissymme-
try implies that, following decoupling, the negative masses
form a regular network of spheroidal conglomerates, while
the positive mass, confined to the remaining space, adopts a
patchy distribution.

The model also accounts for the existence of large voids,
with the dipole repeller being the first identified among them.
At the centers of these large voids are invisible spheroidal
conglomerates that behave like giant protostars, with cool-
ing times exceeding the age of the universe. These objects,
which emit negative-energy photons corresponding to light
in the red and infrared regions, do not evolve and do not give
rise to stars, galaxies, or atoms heavier than helium. Life,
therefore, is absent from this negative sector, which consists
of a mixture of negative-mass antihydrogen and antihelium.

Furthermore, the model explains the very early forma-
tion of first-generation stars and galaxies, as recently demon-
strated by the James Webb Space Telescope. We then exam-
ine the issue of the model’s mathematical consistency, specif-
ically whether the Bianchi identities are satisfied. We show
that they can be asymptotically satisfied under conditions
corresponding to the Newtonian approximation.

Lastly, we address the question of objects that do not fit
within this approximation, primarily located on the positive-
mass side. We assert that we are not required to provide the
exact form of the interaction tensor in such cases, as it is
determined by the zero-divergence condition. The lack of
definition of this tensor does not invalidate the consistency
of a non-linear solution.
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